Skip to main content

Determination of MiRNA Targets in Skeletal Muscle Cells

  • Protocol
  • First Online:
Myogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 798))

Abstract

MicroRNAs (miRNAs) are a class of small ∼22 nucleotide noncoding RNAs which regulate gene expression at the posttranscriptional level by either destabilizing and consequently degrading their targeted mRNAs or by repressing their translation. Emerging evidence has demonstrated that miRNAs are essential for normal mammalian development, homeostasis, and many other functions. In addition, deleterious changes in miRNA expression were associated with human diseases. Several muscle-specific miRNAs, including miR-1, miR-133, miR-206, and miR-208, have been shown to be important for normal myoblast differentiation, proliferation, and muscle remodeling in response to stress. They have also been implicated in various cardiac and skeletal muscular diseases. miRNA-based gene therapies hold great potential for the treatment of cardiac and skeletal muscle diseases. Herein, we describe methods commonly applied to study the biological role of miRNAs, as well as techniques utilized to manipulate miRNA expression and to investigate their target regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wagner, K.R. (2002) Genetic diseases of ­muscle. Neurol Clin. 20, 645–678.

    Article  Google Scholar 

  2. Bartel, D.P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 116, 281–297.

    Article  PubMed  CAS  Google Scholar 

  3. He, L., Thomson, J.M., Hemann, M.T., Hernando-Monge, E., Mu, D., Goodson, S., Powers, S., Cordon-Cardo, C., Lowe, S.W., Hannon, G.J., and Hammond, S.M. (2005) A microRNA polycistron as a potential human oncogene. Nature. 435, 828–833.

    Article  PubMed  CAS  Google Scholar 

  4. Rodriguez, A., Griffiths-Jones, S., Ashurst, J.L., and Bradley, A. (2004) Identification of mammalian microRNA host genes and transcription units. Genome Res. 14, 1902–1910.

    Article  PubMed  CAS  Google Scholar 

  5. Ruby, J.G., Jan, C.H., and Bartel, D.P. (2007) Intronic microRNA precursors that bypass Drosha processing. Nature. 448, 83–86.

    Article  PubMed  CAS  Google Scholar 

  6. Yi, R., Qin, Y., Macara, I.G., and Cullen, B.R. (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 17, 3011–3016.

    Article  PubMed  CAS  Google Scholar 

  7. Hutvágner, G., McLachlan, J., Pasquinelli, A.E., Bálint, E., Tuschl, T., and Zamore, P.D. (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science. 293, 834–838.

    Article  PubMed  Google Scholar 

  8. Schwarz, D.S., Hutvágner. G., Du. T., Xu. Z., Aronin. N., and Zamore, P.D. (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell. 115, 199–208.

    Article  PubMed  CAS  Google Scholar 

  9. Lee, R.C., and Ambros, V. (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science. 294, 862–864.

    Article  PubMed  CAS  Google Scholar 

  10. Williams, A.H., Liu, N., van Rooij, E., and Olson, E.N. (2009) MicroRNA control of muscle development and disease. Curr Opin Cell Biol. 21, 461–469.

    Article  PubMed  CAS  Google Scholar 

  11. Zhao, Y., Samal, E., and Srivastava, D. (2005) Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature. 436, 214–220.

    Article  PubMed  CAS  Google Scholar 

  12. Chen, J.F., Mandel, E.M., Thomson, J.M., Wu, Q., Callis, T.E., Hammond, S.M., Conlon, F.L., and Wang, D.Z. (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet. 38, 228–233.

    Article  PubMed  CAS  Google Scholar 

  13. van Rooij, E., Sutherland, L.B., Qi, X., Richardson, J.A., Hill, J., and Olson, E.N. (2007) Control of stress-dependent cardiac growth and gene expression by a microRNA. Science. 316, 575–579.

    Article  PubMed  Google Scholar 

  14. Simon, D.J., Madison, J.M., Conery, A.L., Thompson-Peer, K.L., Soskis, M., Ruvkun, G.B., Kaplan, J.M., and Kim, J.K. (2008) The microRNA miR-1 regulates a MEF-2-dependent retrograde signal at neuromuscular junctions. Cell. 133, 903–915.

    Article  PubMed  CAS  Google Scholar 

  15. Kwon, C., Han, Z., Olson, E.N., and Srivastava, D. (2005) MicroRNA1 influences cardiac differentiation in Drosophila and regulates Notch signaling. Proc Natl Acad Sci USA. 102, 18986–18991.

    Article  PubMed  CAS  Google Scholar 

  16. Callis, T.E., and Wang, D.Z. (2008) Taking microRNAs to heart. Trends Mol Med. 14, 254–260.

    Article  PubMed  CAS  Google Scholar 

  17. Chen, J.F., Callis, T.E., and Wang, D.Z. (2009) microRNAs and muscle disorders. J Cell Sci. 122, 13–20.

    Article  PubMed  CAS  Google Scholar 

  18. Yang,B., Lin, H., Xiao, J., Lu, Y., Luo, X., Li, B., Zhang, Y., Xu, C., Bai, Y., Wang, H., Chen, G., and Wang, Z. (2007) The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med. 13, 486–91.

    Article  PubMed  CAS  Google Scholar 

  19. Callis, T.E., Pandya, K., Seok, H.Y., Tang, R.H., Tatsuguchi, M., Huang, Z.P., Chen, J.F., Deng, Z., Gunn, B., Shumate, J., Willis, M.S., Selzman, C.H., Wang, D.Z. (2009) MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Invest. 119, 2772–86.

    Article  PubMed  CAS  Google Scholar 

  20. McCarthy, J.J. (2008) MicroRNA-206: the skeletal muscle-specific myomiR. Biochim Biophys Acta. 1779, 682–691.

    Article  PubMed  CAS  Google Scholar 

  21. Eisenberg, I., Eran, A., Nishino, I., Moggio, M., Lamperti, C., Amato, A.A., Lidov, H.G,, Kang, P.B., North, K.N., Mitrani-Rosenbaum, S., Flanigan, K.M., Neely, L.A., Whitney, D., Beggs, A.H., Kohane, I.S., and Kunkel, L.M. (2007) Distinctive patterns of microRNA expression in primary muscular disorders. Proc Natl Acad Sci. USA. 104, 17016–17021.

    Article  PubMed  CAS  Google Scholar 

  22. van Rooij, E., Sutherland, L.B., Liu, N., Williams, A.H., McAnally, J., Gerard, R.D., Richardson, J.A., and Olson, E.N. (2006) A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci. USA. 103, 18255–18260.

    Article  PubMed  Google Scholar 

  23. van Rooij, E., Sutherland, L.B., Thatcher, J.E., DiMaio, J.M., Naseem, R.H., Marshall, W.S., Hill, J.A., and Olson, E.N. (2008) Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci. USA. 105, 13027–13032.

    Article  PubMed  Google Scholar 

  24. Tatsuguchi, M., Seok, H.Y., Callis, T.E., Thomson, J.M., Chen, J.F., Newman, M., Rojas, M., Hammond, S.M., and Wang, D.Z. (2007) Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. J Mol Cell Cardiol. 42, 1137–1141.

    Article  PubMed  CAS  Google Scholar 

  25. McCarthy, J.J., Esser, K.A., and Andrade, F.H. (2007) MicroRNA-206 is overexpressed in the diaphragm but not the hindlimb muscle of mdx mouse. Am J Physiol Cell Physiol. 293, C451–457.

    Article  PubMed  CAS  Google Scholar 

  26. Gentner, B., Schira, G., Giustacchini, A., Amendola, M., Brown, B.D., Ponzoni, M., and Naldini, L. (2009) Stable knockdown of microRNA in vivo by lentiviral vectors. Nat Methods. 6, 63–66.

    Article  PubMed  CAS  Google Scholar 

  27. Krützfeldt, J., Rajewsky, N., Braich, R., Rajeev, K.G., Tuschl, T., Manoharan, M., and Stoffel, M. (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature. 438, 685–689.

    Article  PubMed  Google Scholar 

  28. Krek, A., Grun, D., Poy, M.N., Wolf, R., Rosenberg, L., Epstein, E.J., MacMenamin, P., da Piedade, I., Gunsalus, K.C., Stoffel, M. & Rajewsky, N. (2005). Combinatorial microRNA target predictions. Nat Genet. 37, 495–500.

    CAS  Google Scholar 

  29. John, B., Enright, A.J., Aravin, A., Tuschl, T., Sander, C. & Marks, D.S. (2004). Human MicroRNA targets. PLoS Biol. 2, e363.

    Article  Google Scholar 

  30. Lewis, B.P., Burge, C.B. & Bartel, D.P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 120, 15–20.

    Article  PubMed  CAS  Google Scholar 

  31. Selbach, M., Schwanhäusser, B., Thierfelder, N., Fang, Z., Khanin, R., Rajewsky, N. (2008) Widespread changes in protein synthesis induced by microRNAs. Nature. 455, 58–63.

    Article  PubMed  CAS  Google Scholar 

  32. Baek, D., Villén, J., Shin, C., Camargo, F.D., Gygi, S.P., Bartel, D.P. (2008) The impact of microRNAs on protein output. Nature. 455, 64–71.

    Article  PubMed  CAS  Google Scholar 

  33. Stegmeier, F., Hu, G., Rickles, R.J., Hannon, G.J., Elledge, S.J. (2005) A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells. Proc Natl Acad Sci. USA. 102, 13212–13217.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank members of the Wang laboratory for discussion and ­support. Research in the Wang lab was supported by the March of Dimes Birth Defect Foundation, National Institutes of Health and Muscular Dystrophy Association. ZP Huang is a postdoctoral ­fellow and DZ Wang is an Established Investigator of the American Heart Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da-Zhi Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Huang, ZP., Espinoza-Lewis, R., Wang, DZ. (2012). Determination of MiRNA Targets in Skeletal Muscle Cells. In: DiMario, J. (eds) Myogenesis. Methods in Molecular Biology, vol 798. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-343-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-343-1_28

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-342-4

  • Online ISBN: 978-1-61779-343-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics