Skip to main content

Analysing the ATP Turnover Cycle of Microtubule Motors

  • Protocol
  • First Online:
Microtubule Dynamics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 777))

Abstract

Proteins of the kinesin superfamily share a conserved motor domain, which both hydrolyses adenosine-5′-triphosphate (ATP) and binds microtubules. To determine the mechanism of action of a kinesin, it is necessary to relate the chemical cycle of ATP turnover to the mechanics of microtubule interaction. In this chapter, a number of methods are outlined by which the ATP turnover cycle of a kinesin can be analysed with a particular focus on the use of fluorescently labelled ATP and ADP analogues as a means of isolating individual steps in the cycle. By analysing the ATP turnover cycle of a kinesin, both in solution and in the presence of microtubules, the change in nucleotide state triggered upon microtubule binding can be determined. This provides information vital to understanding the coupling of the chemical and mechanical cycles that is integral to the action of members of the kinesin superfamily.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miki, H., et al. (2005) Analysis of the kinesin superfamily: insights into structure and function Trends Cell Biol 15, 467–476.

    CAS  Google Scholar 

  2. Hirokawa, N., et al. (2009) Kinesin superfamily motor proteins and intracellular transport Nat Rev Mol Cell Biol 10, 682–696.

    Article  CAS  Google Scholar 

  3. Peterman, E. J., and Scholey, J. M. (2009) Mitotic microtubule crosslinkers: insights from mechanistic studies Curr Biol 19, R1089–1094.

    CAS  Google Scholar 

  4. Howard, J., and Hyman, A. A. (2007) Microtubule polymerases and depolymerases Curr Opin Cell Biol 19, 31–35.

    Article  CAS  Google Scholar 

  5. Wordeman, L. (2005) Microtubule-depolymerizing kinesins Curr Opin Cell Biol 17, 82–88.

    Article  CAS  Google Scholar 

  6. Burton, K. (1969) in “Data for Biochemical Research” (Dawson, R. M., et al., Eds.), Oxford university Press.

    Google Scholar 

  7. Hackney, D. D., and Jiang, W. (2001) Assays for kinesin microtubule-stimulated ATPase activity Methods Mol Biol 164, 65–71.

    CAS  Google Scholar 

  8. Bagshaw, C. (2001) ATP analogues at a glance J Cell Sci 114, 459–460.

    CAS  Google Scholar 

  9. Lisal, J., and Tuma, R. (2005) Cooperative mechanism of RNA packaging motor J Biol Chem 280, 23157–23164.

    CAS  Google Scholar 

  10. Gilbert, S. P., et al. (1995) Pathway of processive ATP hydrolysis by kinesin Nature 373, 671–676.

    CAS  Google Scholar 

  11. Sadhu, A., and Taylor, E. W. (1992) A kinetic study of the kinesin ATPase J Biol Chem 267, 11352–11359.

    CAS  Google Scholar 

  12. Goodrich, J. A., and Kugel, J. F. (2007) Binding and Kinetics for Molecular Biologists, Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  13. Johnson, K. A. (1983) The pathway of ATP hydrolysis by dynein. Kinetics of a presteady state phosphate burst J Biol Chem 258, 13825–13832.

    CAS  Google Scholar 

  14. Brune, M., et al. (1994) Direct, real-time measurement of rapid inorganic phosphate release using a novel fluorescent probe and its application to actomyosin subfragment 1 ATPase Biochemistry 33, 8262–8271.

    Google Scholar 

  15. Cochran, J. C., et al. (2009) ATPase cycle of the nonmotile kinesin NOD allows microtubule end tracking and drives chromosome movement Cell 136, 110–122.

    CAS  Google Scholar 

  16. Johnson, K. A. (1986) Rapid kinetic analysis of mechanochemical adenosinetriphosphatases Methods Enzymol 134, 677–705.

    CAS  Google Scholar 

  17. Ma, Y. Z., and Taylor, E. W. (1997) Kinetic mechanism of a monomeric kinesin construct J Biol Chem 272, 717–723.

    CAS  Google Scholar 

  18. Desai, A., and Walczak, C. E. (2001) Assays for microtubule-destabilizing kinesins Methods Mol Biol 164, 109–121.

    CAS  Google Scholar 

  19. Hyman, A., et al. (1991) Preparation of modified tubulins Methods Enzymol 196, 478–485.

    Article  CAS  Google Scholar 

  20. Gell, C., et al. (2010) Microtubule Dynamics Reconstituted in vitro and Imaged by Single-Molecule Fluorescence Microscopy Methods in Cell Biology 95, 221–245.

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge with thanks Roger Goody and Aymelt Itzen for assistance in developing the protocol described in Subheading 3.2.2, and also Christopher Gell for critical reading of the manuscript. This work was supported by the Alexander Von Humboldt Foundation and the Max Planck Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire T. Friel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Friel, C.T., Bagshaw, C.R., Howard, J. (2011). Analysing the ATP Turnover Cycle of Microtubule Motors. In: Straube, A. (eds) Microtubule Dynamics. Methods in Molecular Biology, vol 777. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-252-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-252-6_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-251-9

  • Online ISBN: 978-1-61779-252-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics