Skip to main content

Developmental Genetics in Xenopus tropicalis

  • Protocol
  • First Online:
Vertebrate Embryogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 770))

Abstract

The diploid pipid frog Xenopus tropicalis has recently emerged as a powerful new model system for combining genetic and genomic analysis of tetrapod development with embryological and biochemical assays. Its early development closely resembles that of its well-understood tetraploid relative Xenopus laevis, from which techniques and reagents can be readily transferred, but its compact genome is highly syntenic with those of amniotes. Genetic approaches are facilitated by the large number of embryos produced and the ease of haploid genetics and gynogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gurdon, J. B. and Hopwood, N. (2000) The introduction of Xenopus laevis into developmental biology: of empire, pregnancy testing and ribosomal genes. Int. J. Dev. Biol. 44, 43–50.

    PubMed  CAS  Google Scholar 

  2. Hellsten, U., Harland, R. M., Gilchrist, M. J., Hendrix, D., Jurka, J., Kapitonov, V., Ovcharenko, I., Putnam, N. H., Shu, S., Taher, L., Blitz, I. L., Blumberg, B., Dichmann, D. S., Dubchak, I., Amaya, E., Detter, J. C., Fletcher, R., Gerhard, D. S., Goodstein, D., Graves, T., Grigoriev, I. V., Grimwood, J., Kawashima, T., Lindquist, E., Lucas, S. M., Mead, P. E., Mitros, T., Ogino, H., Ohta, Y., Poliakov, A. V., Pollet, N., Robert, J., Salamov, A., Sater, A. K., Schmutz, J., Terry, A., Vize, P. D., Warren, W. C., Wells, D., Wills, A., Wilson, R. K., Zimmerman, L. B., Zorn, A. M., Grainger, R., Grammer, T., Khokha, M. K., Richardson, P. M., and Rokhsar, D. S. (2010) The genome of the Western clawed frog Xenopus tropicalis. Science 328, 633–6.

    Article  PubMed  CAS  Google Scholar 

  3. Goda, T., Abu-Daya, A., Carruthers, S., Clark, M. D., Stemple, D. L., and Zimmerman, L. B. (2006) Genetic screens for mutations affecting development of Xenopus tropicalis. PLoS Genet. 2, e91.

    Article  PubMed  CAS  Google Scholar 

  4. Grammer, T. C., Khokha, M. K., Lane, M. A., Lam, K., and Harland, R. M. (2005) Identification of mutants in inbred Xenopus tropicalis. Mech. Dev. 122, 263–72.

    Article  PubMed  CAS  Google Scholar 

  5. Noramly, S., Zimmerman, L., Cox, A., Aloise, R., Fisher, M., and Grainger, R. M. (2005) A gynogenetic screen to isolate naturally occurring recessive mutations in Xenopus tropicalis. Mech. Dev. 122, 273–87.

    Article  PubMed  CAS  Google Scholar 

  6. Abu-Daya, A., Sater, A. K., Wells, D. E., Mohun, T. J., and Zimmerman, L. B. (2009) Absence of heartbeat in the Xenopus tropicalis mutation muzak is caused by a nonsense mutation in cardiac myosin myh6. Dev. Biol. 336, 20–9.

    Article  PubMed  CAS  Google Scholar 

  7. Khokha, M. K., Krylov, V., Reilly, M. J., Gall, J. G., Bhattacharya, D., Cheung, C. Y. J., Kaufman, S., Lam, D. K., Macha, J., Ngo, C., Prakash, N., Schmidt, P., Tlapakova, T., Trivedi, T., Tumova, L., Abu-Daya, A., Geach, T., Vendrell, E., Ironfield, H., Sinzelle, L., Sater, A. K., Wells, D. E., Harland, R. M., and Zimmerman, L. B. (2009) Rapid gynogenetic mapping of Xenopus tropicalis mutations to chromosomes. Dev. Dyn. 238, 1398–46.

    Article  PubMed  CAS  Google Scholar 

  8. Reinschmidt, D., Friedman, J., Hauth, J., Ratner, E., Cohen, M., Miller, M., Krotoski, D., and Tompkins, R. (1985) Gene–centromere mapping in Xenopus laevis. J. Hered. 76, 345–7.

    PubMed  CAS  Google Scholar 

  9. Tompkins, R. and Reinschmidt, D. (1991) Experimentally induced homozygosity in Xenopus laevis. Methods Cell Biol. 36, 35–44.

    Article  PubMed  CAS  Google Scholar 

  10. Kroll, K. L. and Amaya, E. (1996) Transgenic Xenopus embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation. Development 122, 3173–83.

    PubMed  CAS  Google Scholar 

  11. Yergeau, D. A. and Mead, P. E. (2007) Manipulating the Xenopus genome with transposable elements. Genome Biol. 8 Suppl 1, S11.

    Article  PubMed  Google Scholar 

  12. Ogino, H., McConnell, W. B., and Grainger, R. M. (2006) Highly efficient transgenesis in Xenopus tropicalis using I-SceI meganuclease. Mech. Dev. 123, 103–13.

    Article  PubMed  CAS  Google Scholar 

  13. Allen, B. G. and Weeks, D. L. (2005) Transgenic Xenopus laevis embryos can be generated using phiC31 integrase. Nat. Methods 2, 975–9.

    Article  PubMed  CAS  Google Scholar 

  14. Hirsch, N., Zimmerman, L. B., Gray, J., Chae, J., Curran, K. L., Fisher, M., Ogino, H., and Grainger, R. M. (2002) Xenopus tropicalis transgenic lines and their use in the study of embryonic induction. Dev. Dyn. 225, 522–35.

    Article  PubMed  CAS  Google Scholar 

  15. Chae, J., Zimmerman, L. B., and Grainger, R. M. (2002) Inducible control of tissue-specific transgene expression in Xenopus tropicalis transgenic lines. Mech. Dev. 117, 235–41.

    Article  PubMed  CAS  Google Scholar 

  16. Hartley, K. O., Nutt, S. L., and Amaya, E. (2002) Targeted gene expression in transgenic Xenopus using the binary Gal4-UAS system. Proc. Natl. Acad. Sci. USA 99, 1377–82.

    Article  PubMed  CAS  Google Scholar 

  17. Ryffel, G. U., Werdien, D., Turan, G., Gerhards, A., Goosses, S., and Senkel, S. (2003) Tagging muscle cell lineages in development and tail regeneration using Cre recombinase in transgenic Xenopus. Nucleic Acids Res. 31, e44.

    Article  PubMed  Google Scholar 

  18. Lehman, C. W. and Carroll, D. (1991) Homologous recombination catalyzed by a nuclear extract from Xenopus oocytes. Proc. Natl. Acad. Sci. USA 88, 10840–4.

    Article  PubMed  CAS  Google Scholar 

  19. Doyon, Y., McCammon, J. M., Miller, J. C., Faraji, F., Ngo, C., Katibah, G. E., Amora, R., Hocking, T. D., Zhang, L., Rebar, E. J., Gregory, P. D., Urnov, F. D., and Amacher, S. L. (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat. Biotechnol. 26, 702–8.

    Article  PubMed  CAS  Google Scholar 

  20. Carruthers, S. and Stemple, D. L. (2006) Genetic and genomic prospects for Xenopus tropicalis research. Sem. Cell Dev. Biol. 17, 146–53.

    Article  CAS  Google Scholar 

  21. Sargent, M. G. and Mohun, T. J. (2005) Cryopreservation of sperm of Xenopus laevis and Xenopus tropicalis. Genesis 41, 41–6.

    Article  PubMed  Google Scholar 

  22. Bahary, N., Davidson, A., Ransom, D., Shepard, J., Stern, H., Trede, N., Zhou, Y., Barut, B., and Zon, L. I. (2004) The Zon laboratory guide to positional cloning in zebrafish. Methods Cell Biol. 77, 305–29.

    Article  PubMed  CAS  Google Scholar 

  23. Bassam, B. J., Caetano-Anolles, G., and Gresshoff, P. M. (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196, 80–3.

    Article  PubMed  CAS  Google Scholar 

  24. Streisinger, G., Singer, F., Walker, C., Knauber, D., and Dower, N. (1986) Segregation analyses and gene–centromere distances in zebrafish. Genetics 112, 311–19.

    PubMed  CAS  Google Scholar 

  25. Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M., et al. (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23, 4407–14.

    Article  PubMed  CAS  Google Scholar 

  26. Neff, M. M., Neff, J. D., Chory, J., and Pepper, A. E. (1998) dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J. Cell Mol. Biol. 14, 387–92.

    Article  CAS  Google Scholar 

  27. Konieczny, A. and Ausubel, F. M. (1993) A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J. Cell Mol. Biol. 4, 403–10.

    Article  CAS  Google Scholar 

  28. Chang, Y. -F., Imam, J. S., and Wilkinson, M. F. (2007) The nonsense-mediated decay RNA surveillance pathway. Annu. Rev. Biochem. 76, 51–74.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

A large number of colleagues have adapted and developed the protocols outlined in this chapter. In addition to all past and present members of the Zimmerman laboratory, the authors would particularly like to thank Rob Grainger (University of Virginia), Richard Harland (UC Berkeley) and Mustafa Khokha (Yale). T.J.G. and L.B.Z. are funded by the Medical Research Council, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lyle B. Zimmerman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Geach, T.J., Zimmerman, L.B. (2011). Developmental Genetics in Xenopus tropicalis . In: Pelegri, F. (eds) Vertebrate Embryogenesis. Methods in Molecular Biology, vol 770. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-210-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-210-6_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-209-0

  • Online ISBN: 978-1-61779-210-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics