Advertisement

Cytofluorometric Purification of Diploid and Tetraploid Cancer Cells

  • Maria CastedoEmail author
  • Lorenzo Galluzzi
  • Ilio Vitale
  • Laura Senovilla
  • Didier Métivier
  • Mohamed Jèmaà
  • Santiago Rello-Varona
  • Guido Kroemer
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 761)

Abstract

During malignant transformation, cells can increase their ploidy and hence become polyploid (mostly tetraploid). Frequently, however, tetraploid cells undergo asymmetric divisions, in turn entailing a reduction in ploidy and the acquisition of a pseudo-diploid, aneuploid state. To investigate such a stepwise aneuploidization process, we developed a cytofluorometric method (based on the heterogeneity in cell size and/or chromatin content) that allows for the cloning and subsequent functional analysis of cells with distinct ploidies. Here, we detail this methodology, which has been instrumental for investigating the functional link between ploidy status and oncogenesis.

Key words

Cancer CMFDA CMTMR H2B-GFP p53 RKO 

Notes

Acknowledgments

GK is supported by the Ligue Nationale contre le Cancer (Equipe labellisée), Agence Nationale de la Recherche (ANR), Cancéropôle Ile-de-France, Fondation pour la Recherche Médicale (FRM), Institut National du Cancer (INCa), European Commission (Active p53, Apo-Sys, RIGHT, TransDeath, ChemoRes, ApopTrain), and Fondation pour la Recherche Médicale. MC is funded by the Association pour la recherche sur le cancer (ARC). LG, IV, and LS are supported by Apo-Sys, La Ligue contre le Cancer and FRM, respectively.

References

  1. 1.
    Heselmeyer, K., Schrock, E., du Manoir, S., Blegen, H., Shah, K., Steinbeck, R., Auer, G., and Ried, T. (1996) Gain of chromosome 3q defines the transition from severe dysplasia to invasive carcinoma of the uterine cervix. Proc. Natl. Acad. Sci. USA. 93, 479–484.PubMedCrossRefGoogle Scholar
  2. 2.
    Maley, C. C., Galipeau, P. C., Li, X., Sanchez, C. A., Paulson, T. G., Blount, P. L., and Reid, B. J. (2004) The combination of genetic instability and clonal expansion predicts progression to esophageal adenocarcinoma. Cancer Res. 64, 7629–7633.PubMedCrossRefGoogle Scholar
  3. 3.
    Fujiwara, T., Bandi, M., Nitta, M., Ivanova, E. V., Bronson, R. T., and Pellman, D. (2005) Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 437, 1043–1047.PubMedCrossRefGoogle Scholar
  4. 4.
    Margolis, R. L. (2005) Tetraploidy and tumor development. Cancer Cell 8, 353–354.PubMedCrossRefGoogle Scholar
  5. 5.
    Storchova, Z., and Pellman, D. (2004) From polyploidy to aneuploidy, genome instability and cancer. Nat. Rev. Mol. Cell. Biol. 5, 45–54.PubMedCrossRefGoogle Scholar
  6. 6.
    Andreassen, P. R., Lohez, O. D., Lacroix, F. B., and Margolis, R. L. (2001) Tetraploid state induces p53-dependent arrest of nontransformed mammalian cells in G1. Mol. Biol. Cell 12, 1315–1328.PubMedGoogle Scholar
  7. 7.
    Castedo, M., Coquelle, A., Vitale, I., Vivet, S., Mouhamad, S., Viaud, S., Zitvogel, L., and Kroemer, G. (2006) Selective resistance of tetraploid cancer cells against DNA damage-induced apoptosis. Ann. N Y Acad. Sci. 1090, 35–49.PubMedCrossRefGoogle Scholar
  8. 8.
    Castedo, M., Coquelle, A., Vivet, S., Vitale, I., Kauffmann, A., Dessen, P., Pequignot, M. O., Casares, N., Valent, A., Mouhamad, S., Schmitt, E., Modjtahedi, N., Vainchenker, W., Zitvogel, L., Lazar, V., Garrido, C., and Kroemer, G. (2006) Apoptosis regulation in tetraploid cancer cells. EMBO J. 25, 2584–2595.PubMedCrossRefGoogle Scholar
  9. 9.
    Cross, S. M., Sanchez, C. A., Morgan, C. A., Schimke, M. K., Ramel, S., Idzerda, R. L., Raskind, W. H., and Reid, B. J. (1995) A p53-dependent mouse spindle checkpoint. Science 267, 1353–1356.PubMedCrossRefGoogle Scholar
  10. 10.
    Senovilla, L., Vitale, I., Galluzzi, L., Vivet, S., Joza, N., Younes, A. B., Rello-Varona, S., Castedo, M., and Kroemer, G. (2009) p53 represses the polyploidization of primary mammary epithelial cells by activating apoptosis. Cell Cycle 8, 1380–1385.PubMedCrossRefGoogle Scholar
  11. 11.
    Vitale, I., Senovilla, L., Jemaà, M., Michaud, M., Galluzzi, L., Kepp, O., Nanty, L., Criollo, A., Rello-Varona, S., Manic, G., Métivier, D., Vivet, S., Tajeddine, N., Valent, A., Castedo, M., and Kroemer, G. (2010) Multipolar mitosis of tetraploid cells: inhibition by p53 and dependency on Mos. EMBO J. 29, 1272–1284.PubMedCrossRefGoogle Scholar
  12. 12.
    Rello-Varona, S., Vitale, I., Kepp, O., Senovilla, L., Jemaa, M., Metivier, D., Castedo, M., and Kroemer, G. (2009) Preferential killing of tetraploid tumor cells by targeting the mitotic kinesin Eg5. Cell Cycle 8, 1030–1035.PubMedCrossRefGoogle Scholar
  13. 13.
    Vitale, I., Galluzzi, L., Vivet, S., Nanty, L., Dessen, P., Senovilla, L., Olaussen, K. A., Lazar, V., Prudhomme, M., Golsteyn, R. M., Castedo, M., and Kroemer, G. (2007) Inhibition of Chk1 kills tetraploid tumor cells through a p53-dependent pathway. PLoS One 2, e1337.PubMedCrossRefGoogle Scholar
  14. 14.
    Vitale, I., Senovilla, L., Galluzzi, L., Criollo, A., Vivet, S., Castedo, M., and Kroemer, G. (2008) Chk1 inhibition activates p53 through p38 MAPK in tetraploid cancer cells. Cell Cycle 7, 1956–1961.PubMedCrossRefGoogle Scholar
  15. 15.
    Cariello, N. F., Keohavong, P., Sanderson, B. J., and Thilly, W. G. (1988) DNA damage produced by ethidium bromide staining and exposure to ultraviolet light. Nucleic Acids Res. 16, 4157.PubMedCrossRefGoogle Scholar
  16. 16.
    Zhang, X., and Kiechle, F. (2001) Hoechst 33342-induced apoptosis is associated with decreased immunoreactive topoisomerase I and topoisomerase I-DNA complex formation. Ann. Clin. Lab. Sci. 31, 187–198.PubMedGoogle Scholar
  17. 17.
    Mouhamad, S., Galluzzi, L., Zermati, Y., Castedo, M., and Kroemer, G. (2007) Apaf-1 deficiency causes chromosomal instability. Cell Cycle 6, 3103–3107.PubMedCrossRefGoogle Scholar
  18. 18.
    Zermati, Y., Mouhamad, S., Stergiou, L., Besse, B., Galluzzi, L., Boehrer, S., Pauleau, A. L., Rosselli, F., D’Amelio, M., Amendola, R., Castedo, M., Hengartner, M., Soria, J. C., Cecconi, F., and Kroemer, G. (2007) Nonapoptotic role for Apaf-1 in the DNA damage checkpoint. Mol. Cell 28, 624–637.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Maria Castedo
    • 1
    Email author
  • Lorenzo Galluzzi
    • 1
  • Ilio Vitale
    • 1
  • Laura Senovilla
    • 1
  • Didier Métivier
    • 1
  • Mohamed Jèmaà
    • 1
  • Santiago Rello-Varona
    • 1
  • Guido Kroemer
    • 1
  1. 1.INSERM, U848, Institut Gustave RoussyVillejuifFrance

Personalised recommendations