Skip to main content

Proteomic Analysis of Dental Tissue Microsamples

  • Protocol
  • First Online:
Oral Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 666))

Abstract

Improved understanding of dental enamel development will benefit not only dentistry but also biomedicine more generally. Rat and mouse models of enamel development are relatively well characterized and experimentally powerful. However, the diminutive size of murine teeth makes them difficult to study using standard proteomic approaches. Here we describe gel-based proteomic methods that enable parallel quantification, identification, and functional characterization of proteins from developing rat and mouse teeth. These refined methods are also likely to be applicable to other scarce samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hubbard, M. J. (1996) Abundant calcium homeostasis machinery in rat dental enamel cells. Up-regulation of calcium store proteins during enamel mineralization implicates the endoplasmic reticulum in calcium transcytosis. Eur. J. Biochem. 239, 611–623.

    Article  PubMed  CAS  Google Scholar 

  2. Hubbard, M. J. (2000) Calcium transport across the dental enamel epithelium. Crit. Rev. Oral Biol. Med. 11, 437–466.

    Article  PubMed  CAS  Google Scholar 

  3. Franklin, I. K., Winz, R. A., and Hubbard, M. J. (2001) Endoplasmic reticulum Ca2+-ATPase pump is up-regulated in calcium-transporting dental enamel cells: a non-housekeeping role for SERCA2b. Biochem. J. 358, 217–224.

    Article  PubMed  CAS  Google Scholar 

  4. Turnbull, C. I., Looi, K., Mangum, J. E., Meyer, M., Sayer, R. J., and Hubbard, M. J. (2004) Calbindin independence of calcium transport in developing teeth contradicts the calcium ferry dogma. J. Biol. Chem. 279, 55850–55854.

    Article  PubMed  CAS  Google Scholar 

  5. Hubbard, M. J., and McHugh, N. J. (1995) Calbindin28kDa and calbindin30kDa (calretinin) are substantially localised in the particulate fraction of rat brain. FEBS Lett. 374, 333–337.

    Article  PubMed  CAS  Google Scholar 

  6. Hubbard, M. J. (1995) Calbindin28kDa and calmodulin are hyperabundant in rat dental enamel cells. Identification of the protein phosphatase calcineurin as a principal calmodulin target and of a secretion-related role for calbindin28kDa. Eur. J. Biochem. 230, 68–79.

    Article  PubMed  CAS  Google Scholar 

  7. Hubbard, M. J., and McHugh, N. J. (1996) Mitochondrial ATP synthase F1-beta-subunit is a calcium-binding protein. FEBS Lett. 391, 323–329.

    Article  PubMed  CAS  Google Scholar 

  8. Hubbard, M. J. (1998) Enamel cell biology. Towards a comprehensive biochemical understanding. Connect. Tissue Res. 38, 17–32.

    Article  PubMed  CAS  Google Scholar 

  9. Hubbard, M. J. (1998) Proteomic analysis of enamel cells from developing rat teeth: big returns from a small tissue. Electrophoresis 19, 1891–1900.

    Article  PubMed  CAS  Google Scholar 

  10. Sayer, R. J., Turnbull, C. I., and Hubbard, M. J. (2000) Calbindin28kDa is specifically associated with extranuclear constituents of the dense particulate fraction. Cell Tissue Res. 302, 171–180.

    Article  PubMed  CAS  Google Scholar 

  11. Demmer, J., Zhou, C., and Hubbard, M. J. (1997) Molecular cloning of ERp29, a novel and widely expressed resident of the endoplasmic reticulum. FEBS Lett. 402, 145–150.

    Article  PubMed  CAS  Google Scholar 

  12. Hubbard, M. J., and McHugh, N. J. (2000) Human ERp29: isolation, primary structural characterisation and two-dimensional gel mapping. Electrophoresis 21, 3785–3796.

    Article  PubMed  CAS  Google Scholar 

  13. Hubbard, M. J., McHugh, N. J., and Carne, D. L. (2000) Isolation of ERp29, a novel endoplasmic reticulum protein, from rat enamel cells: Evidence for a unique role in secretory-protein synthesis. Eur. J. Biochem. 267, 1945–1957.

    Article  PubMed  CAS  Google Scholar 

  14. Hubbard, M. J., Mangum, J. E., and McHugh, N. J. (2004) Purification and biochemical characterisation of native ERp29 from rat liver. Biochem. J. 383, 589–598.

    Article  PubMed  CAS  Google Scholar 

  15. Hermann, V. M., Cutfield, J. F., and Hubbard, M. J. (2005) Biophysical characterization of ERp29. Evidence for a key structural role of cysteine 125. J. Biol. Chem. 280, 13529–13537.

    Article  PubMed  CAS  Google Scholar 

  16. Hubbard, M. J., Faught, M. J., Carlisle, B. H., and Stockwell, P. A. (2001) ToothPrint, a proteomic database for dental tissues. Proteomics 1, 132–135.

    Article  PubMed  CAS  Google Scholar 

  17. Hubbard, M. J., and Kon, J. C. (2002) Proteomic analysis of dental tissues. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 771, 211–220.

    Article  CAS  Google Scholar 

  18. Mangum, J. E., Farlie, P. G., and Hubbard, M. J. (2005) Proteomic profiling of facial development in chick embryos. Proteomics 5, 2542–2550.

    Article  PubMed  CAS  Google Scholar 

  19. Mangum, J. E., Veith, P. D., Reynolds, E. C., and Hubbard, M. J. (2006) Towards second-generation proteome analysis of murine enamel-forming cells. Eur. J. Oral Sci. 114(Suppl. 1), 259–265.

    Article  PubMed  CAS  Google Scholar 

  20. Kardos, T. B., and Hubbard, M. J. (1981) Rapid dissection of rodent molar-tooth germs. Lab. Anim. 15, 371–373.

    Article  PubMed  CAS  Google Scholar 

  21. Lanne, B., and Panfilov, O. (2005) Protein staining influences the quality of mass spectra obtained by peptide mass fingerprinting after separation on 2-d gels. A comparison of staining with coomassie brilliant blue and sypro ruby. J. Proteome Res. 4, 175–179.

    Article  PubMed  CAS  Google Scholar 

  22. Shnyder, S. D., Mangum, J. E., and Hubbard, M. J. (2008) Triplex profiling of functionally distinct chaperones (ERp29/PDI/BiP) reveals marked heterogeneity of the endoplasmic reticulum proteome in cancer. J. Proteome Res. 7, 3364–3372.

    Article  PubMed  CAS  Google Scholar 

  23. Hubbard, M. J., and Klee, C. B. (1987) Calmodulin binding by calcineurin. Ligand-induced renaturation of protein immobilized on nitrocellulose. J. Biol. Chem. 262, 15062–15070.

    PubMed  CAS  Google Scholar 

  24. James, G. T. (1978) Inactivation of the protease inhibitor phenylmethylsulfonyl fluoride in buffers. Anal. Biochem. 86, 574–579.

    Article  PubMed  CAS  Google Scholar 

  25. McCarthy, J., Hopwood, F., Oxley, D., Laver, M., Castagna, A., Righetti, P. G., Williams, K., and Herbert, B. (2003) Carbamylation of proteins in 2-D electrophoresis – myth or reality? J. Proteome Res. 2, 239–242.

    Article  PubMed  CAS  Google Scholar 

  26. Biedermann, K., Jepsen, P. K., Riise, E., and Svendsen, I. (1989) Purification and characterization of a Serratia marcescens nuclease produced by Escherichia coli. Carlsberg Res. Commun. 54, 17–27.

    Article  PubMed  CAS  Google Scholar 

  27. Hochstrasser, D. F., Harrington, M. G., Hochstrasser, A. C., Miller, M. J., and Merril, C. R. (1988) Methods for increasing the resolution of two-dimensional protein electrophoresis. Anal. Biochem. 173, 424–435.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Nicola McHugh for skillfully assisting with development of the 2DGE procedures described here. This work was supported by the Melbourne Research Unit for Facial Disorders, the National Health and Medical Research Council of Australia, and the Health Research Council of New Zealand.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Mangum, J.E., Kon, J.C., Hubbard, M.J. (2010). Proteomic Analysis of Dental Tissue Microsamples. In: Seymour, G., Cullinan, M., Heng, N. (eds) Oral Biology. Methods in Molecular Biology, vol 666. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-820-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-820-1_19

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-819-5

  • Online ISBN: 978-1-60761-820-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics