Skip to main content

Multiplex Amplifiable Probe Hybridization (MAPH) Methodology as an Alternative to Comparative Genomic Hybridization (CGH)

  • Protocol
  • First Online:
Cancer Susceptibility

Part of the book series: Methods in Molecular Biology ((MIMB,volume 653))

Abstract

Genomic imbalances in locus copy-number are highly significant for the diagnosis and prognosis of cancer. Rapidly progressing DNA microarray technologies detect such pathogenic copy-number changes in the genome with high throughput, efficiency, and resolution. A variety of different microarray-based approaches have emerged, with array comparative genomic hybridization (array-CGH) being the method of choice in current clinical practice. Here we describe an alternative microarray-based technique called array-MAPH, derived from conventional Multiplex Amplifiable Probe Hybridization (MAPH).

The main novelty of array-MAPH is the directed reduction of test DNA complexity prior to hybridization, yielding a mixture of specific probes, identical to target sequences on the microarray and thus increasing hybridization specificity. Unique amplifiable 400–600 bp fragments can be designed for any genomic region of interest, PCR-amplified, and spotted onto arrays as targets. The same sequences are combined into a probe mixture and hybridized to genomic DNA immobilized on a membrane. Bound probes are recovered by quantitative PCR and hybridized to the array. Array-MAPH can be used for the detection of small-scale copy-number changes, thereby providing new insights into the genetic basis of several diseases, including cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lucito, R., Nakimura, M., West, J.A., Han, Y., Chin, K., Jensen, K., et al. (1998) Genetic analysis using genomic representations. Proc. Natl. Acad. Sci. U.S.A. 95, 4487–4492.

    Article  PubMed  CAS  Google Scholar 

  2. Solinas-Toldo, S., Lampel, S., Stilgenbauer, S., Nickolenko, J., Benner, A., Döhner, H., et al. (1997) Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Genes Chromosomes Cancer 20, 399–407.

    Article  PubMed  CAS  Google Scholar 

  3. Wagenstaller, J., Spranger, S., Lorenz-Depiereux, B., Kazmierczak, B., Nathrath, M., Wahl, D., et al. (2007) Copy-number variations measured by single-nucleotide-polymorphism oligonucleotide arrays in patients with mental retardation. Am. J. Hum. Genet. 81, 768–779.

    Article  PubMed  CAS  Google Scholar 

  4. Bignell, G.R., Huang, J., Greshock, J., Watt, S., Butler, A., West, S., et al. (2004) High-resolution analysis of DNA copy number using oligonucleotide microarrays. Genome Res. 14, 287–295.

    Article  PubMed  CAS  Google Scholar 

  5. Patsalis, P.C., Kousoulidou, L., Männik, K., Sismani, C., Zilina, O., Parkel, S., et al. (2007) Detection of small genomic imbalances using microarray-based multiplex amplifiable probe hybridization. Eur. J. Hum. Genet. 15, 162–172.

    Article  PubMed  CAS  Google Scholar 

  6. Sismani, C., Kousoulidou, L., and Patsalis, P.C. (2008) Multiplex Amplifiable Probe Hybridization, Molecular Biomethods Handbook, 2nd edition, (eds. Walker, J.M. and Rapley, R.), Chapter 13, Humana Press, USA, ISBN: 978-1-60327-374-9.

    Google Scholar 

  7. Kousoulidou, L.K., Männik, K., Sismani, C., Zilina, O., Parkel, S., Puusepp, H., et al. (2008) Array-MAPH: a methodology for the detection of locus copy-number changes in complex genomes. Nat. Protoc. 3, 849–865.

    Article  PubMed  CAS  Google Scholar 

  8. Armour, J.A., Sismani, C., Patsalis, P.C., Cross, G., et al. (2000) Measurement of locus copy number by hybridisation with amplifiable probes. Nucleic Acids Res. 28, 605–609.

    Article  PubMed  CAS  Google Scholar 

  9. Kousoulidou, L., Parkel, S., Zilina, O., Palta, P., Puusepp, H., Remm, M., et al. (2007) Screening of 20 patients from XLMR families for X-chromosomal subtle copy number alterations, using chromosome X-specific array-MAPH platform. Eur. J. Med. Genet. 50, 399–410.

    Article  PubMed  Google Scholar 

  10. Kousoulidou, L., Männik, K., Zilina, O., Parkel, S., Palta, P., Remm, M., et al. (2008) Application of two different microarray-based copy-number detection methodologies – array-CGH and array-MAPH – with identical amplifiable target sequences. Clin. Chem. Lab. Med. 46, 722–724.

    Article  PubMed  CAS  Google Scholar 

  11. Puusepp, H., Zordania, R., Paal, M., Bartsch, O., Ounap, K., et al. (2008) A girl with partial Turner syndrome and absence epilepsy. Pediatr. Neurol. 38, 289–292.

    Article  PubMed  Google Scholar 

  12. Patsalis, P.C., Kousoulidou, L., Sismani, C., Männik, K., Kurg, A., et al. (2005) MAPH: from gels to microarrays. Eur. J. Med. Genet. 48, 241–249.

    Article  PubMed  Google Scholar 

  13. Kennedy, G.C., Matsuzaki, H., Dong, S., Liu, W.M., Huang, J., Liu, G., et al. (2003) Large-scale genotyping of complex DNA. Nat. Biotechnol. 21, 1233–1237.

    Article  PubMed  CAS  Google Scholar 

  14. Lucito, R., West, J., Reiner, A., Alexander, J., Esposito, D., Mishra, B., et al. (2000) Detecting gene copy number fluctuations in tumor cells by microarray analysis of genomic representations. Genome Res. 10, 1726–1736.

    Article  PubMed  CAS  Google Scholar 

  15. Gibbons, B., Datta, P., Wu, Y., Chan, A., and Armour, J. (2006) Microarray MAPH: accurate array-based detection of relative copy number in genomic DNA. BMC Genomics 7, 163.

    Article  PubMed  Google Scholar 

  16. Andreson, R., Reppo, E., Kaplinski, L., and Remm, M. (2006) GENOMEMASKER package for designing unique genomic PCR primers. BMC Bioinformatics 7, 172.

    Article  PubMed  Google Scholar 

  17. Morgulis, A., Gertz, E.M., Schäffer, A.A., and Agarwala, R. (2006) WindowMasker: window-based masker for sequenced genomes. Bioinformatics 22, 134–141.

    Article  PubMed  CAS  Google Scholar 

  18. Rozen, S., and Skaletsky, H. (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132, 365–386.

    PubMed  CAS  Google Scholar 

  19. Zhang, Z., Schwartz, S., Wagner, L., and Miller, W. (2000) A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 7, 203–214.

    Article  PubMed  CAS  Google Scholar 

  20. Ning, Z., Cox, A.J., and Mullikin, J.C. (2001) SSAHA: a fast search method for large DNA databases. Genome Res. 11, 1725–1729.

    Article  PubMed  CAS  Google Scholar 

  21. Sambrook, J., and Russell, D.W. (2001) Molecular Cloning: A Laboratory Manual, Vol. 3, 3rd edition, (eds. Sambrook, J and Russell, D.W.) A8.9–A8.24, Cold Spring Harbour Laboratry Press, Cold Spring Harbor, New York, USA.

    Google Scholar 

  22. Kulka, J., Tôkés, A.M., Kaposi-Novák, P., Udvarhelyi, N., Keller, A., and Schaff, Z. (2006) Detection of HER-2/neu gene amplification in breast carcinomas using quantitative real-time PCR – a comparison with immunohistochemical and FISH results. Pathol. Oncol. Res. 12, 197–204.

    Article  PubMed  CAS  Google Scholar 

  23. Mantripragada, K.K., Buckley, P.G., Jarbo, C., Menzel, U., and Dumanski, J.P. (2003) Development of NF2 gene specific, strictly sequence defined diagnostic microarray for deletion detection. J. Mol. Med. 81, 443–451.

    Article  PubMed  CAS  Google Scholar 

  24. Mantripragada, K.K., Tapia-Páez, I., Blennow, E., Nilsson, P., Wedell, A., and Dumanski, J.P. (2004) DNA copy-number analysis of the 22q11 deletion-syndrome region using array-CGH with genomic and PCR-based targets. Int. J. Mol. Med. 13, 273–279.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The above work was funded by the grants 30/2001 from the Cyprus RPF, QLRT-2001-01810 from the EURO-MRX EU, 5467 from the Estonian Science Foundation, by 0182649s04 and PBGMR06907 from the Estonian Ministry of Education and Research, and by 070191/Z/03/Z from the Wellcome Trust International Senior Research Grant. We would also like to thank D. Andreou, C. Tryfonos, E. Hadjiyanni, C. Pitta, C. Antoniades, S. Bashiardes, and G. Slavin for their contribution.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kousoulidou, L., Sismani, C., Patsalis, P.C. (2010). Multiplex Amplifiable Probe Hybridization (MAPH) Methodology as an Alternative to Comparative Genomic Hybridization (CGH). In: Webb, M. (eds) Cancer Susceptibility. Methods in Molecular Biology, vol 653. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-759-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-759-4_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-758-7

  • Online ISBN: 978-1-60761-759-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics