Skip to main content

What Are the Key Targeted Delivery Technologies of siRNA Now?

  • Protocol
  • First Online:
RNA Therapeutics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 629))

  • 4619 Accesses

Abstract

Whilst significant advances have been made in the delivery of nucleic acids to mammalian cells, most of the used strategies do not distinguish between normal and cancer cells. The same challenge is also facing radioactive- and chemo-therapies which are highly toxic and poorly tolerated due to limited tumor specificity. Regardless of the nature of the drug, there is a need for developing a technology platform which targets drugs only to tumors cells, leaving normal cells undamaged. Among the targeting strategies, receptor-targeted delivery provides an innovative strategy to selectively direct therapeutics to cancer cells. Receptor-binding ligands (e.g., peptides, antibodies, aptamers) can be incorporated into gene delivery vesicles or directly conjugated to siRNA in the hope in promoting their localization in target cell expressing the cognate receptors. The present chapter discusses the current progress made in the specific delivery of siRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Garanger, E., Boturyn, D., and Dumy, P. (2007) Tumor targeting with RGD peptide ligands-design of new molecular conjugates for imaging and therapy. Anticancer Agents Med Chem, 7, 552–558.

    PubMed  CAS  Google Scholar 

  2. Shadidi, M. and Sioud, M. (2003) Selective targeting of cancer cells using synthetic peptides. Drug Resist Updat, 6, 363–371.

    Article  PubMed  CAS  Google Scholar 

  3. Sioud, M. (2009) Targeted delivery of antisense oligonucleotides and siRNAs into mammalian cells. Method Mol Biol, 487, 61–82.

    CAS  Google Scholar 

  4. Takeshita, F., Hokaiwado, N., Honma, K., Banas, A., and Ochiya, T. (2009) Local and systemic delivery of siRNAs for oligonucleotide therapy. Methods Mol Biol, 487, 83–92.

    PubMed  CAS  Google Scholar 

  5. Moore, A. and Medarova, Z. (2009) Imaging of siRNA delivery and silencing. Methods Mol Biol, 487, 93–110.

    PubMed  CAS  Google Scholar 

  6. Mykhaylyk, O., Zelphati, O., Hammerschmid, E., Anton, M., Rosenecker, J., and Plank, C. (2009) Recent advances in magnetofection and its potential to deliver siRNAs in vitro. Methods Mol Biol, 487, 111–146.

    PubMed  CAS  Google Scholar 

  7. Sioud, M. (2005) On the delivery of small interfering RNAs into mammalian cells. Expet Opin Drug Deliv, 2, 639–651.

    Article  CAS  Google Scholar 

  8. van Dijk, M.A. and van de Winkel, J.G. (2001) Human antibodies as next generation therapeutics. Curr Opin Chem Biol, 5, 368–374.

    Article  PubMed  Google Scholar 

  9. Ross, J., Gray, K., Schenkein, D., Greene, B., Gray, G.S., Shulok, J., Worland, P.J., Celniker, A., and Rolfe, M. (2003) Antibody-based therapeutics in oncology. Expert Rev Anticancer Ther, 3, 107–121.

    Article  PubMed  CAS  Google Scholar 

  10. Song, E., Zhu, P., Lee, S.K., Chowdhury, D., Kussman, S., Dykxhoorn, D.M., Feng, Y., Palliser, D., Weiner, D.B., Shankar, P., Marasco, W.A., and Lieberman, J. (2005) Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol, 23, 709–717.

    Article  PubMed  CAS  Google Scholar 

  11. Peer, D., Zhu, P., Carman, C.V., Lieberman, J., and Shimaoka., M. (2007) Selective gene silencing in activated leukocytes by targeting siRNAs to the integrin lymphocyte function-associated antigen-1. Proc Natl Acad Sci USA, 104, 4095–4100.

    Article  PubMed  CAS  Google Scholar 

  12. Lee, J.H., Engler, J.A., Collawn, J.F., and Moore, B.A. (2001) Receptor mediated uptake of peptides that bind the human transferrin receptor. Eur J Biochem, 268, 2004–. 2012.

    Article  PubMed  CAS  Google Scholar 

  13. Zheng, X., Vladau, C., Zhang, X., Suzuki, M., Ichim, T.E., Zhang, Z.X., Li, M., Carrier, E., Garcia, B., Jevnikar, A.M., and Min, W.P. (2009) A novel in vivo siRNA delivery system specifically targeting dendritic cells and silencing CD40 genes for immunomodulation. Blood, 113, 2646–2654.

    Article  PubMed  CAS  Google Scholar 

  14. Xia, C.F., Boado, R.J., and Pardridge, W.M. (2008) Antibody-mediated targeting of siRNA via the human insulin receptor using avidin-biotin technology. Mol Pharm, 6, 747–751.

    Article  Google Scholar 

  15. Kumar, P., Ban, H.S., Kim, S.S., Wu, H., Pearson, T., Greiner, D.L., Laouar, A., Yao, J., Haridas, V., Habiro, K., Yang, Y.G., Jeong, J.H., Lee, K.Y., Kim, Y.H., Kim, S.W., Peipp, M., Fey, G.H., Manjunath, N., Shultz, L.D., Lee, S.K., and Shankar, P. (2008) T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell, 134, 577–586.

    Article  PubMed  CAS  Google Scholar 

  16. Aina, O.H., Sroka, T.C., Chen, M.L., and Lam, K.S. (2002) Therapeutic cancer targeting peptides. Biopolymers, 66, 184–199.

    Article  PubMed  CAS  Google Scholar 

  17. Patel, D.S., Dessalew, N., Iqbal, P., and Bharatam, P.V. (2007) Structure-based approaches in the design of GSK-3 selective inhibitors. Curr Protein Pept Sci, 8, 352–364.

    Article  PubMed  CAS  Google Scholar 

  18. Romanov, V.I. (2003) Phage display selection and evaluation of cancer drug targets. Curr Cancer Drug Targets, 3, 119–129.

    Article  PubMed  CAS  Google Scholar 

  19. Falciani, C., Lozzi, L., Pini, A., and Bracci, L. (2005) Bioactive peptides from libraries. Chem Biol, 12, 417–426.

    Article  PubMed  CAS  Google Scholar 

  20. Houghten, R.A., Pinilla, C., Blondelle, S.E., Appel, J.R., Dooley, C.T., and Cuervo, J.H. (1991) Generation and use of synthetic peptide combinatorial libraries for basic research and drug discovery. Nature, 354, 84–86.

    Article  PubMed  CAS  Google Scholar 

  21. Fukuda, M.N., Ohyama, C., Lowitz, K., Matsuo, O., Pasqualini, R., Ruoslahti, E., and Fukuda, M. (2000) A peptide mimic of E-selectin ligand inhibits sialyl Lewis X-dependent lung colonization of tumor cells. Cancer Res, 60, 450–456.

    PubMed  CAS  Google Scholar 

  22. Campa, M.J., Serlin, S.B., and Patz, E.F. (2002) Development of novel tumor imaging agents with phage-display combinatorial peptide libraries. Acad Radiol, 9, 927–932.

    Article  PubMed  Google Scholar 

  23. Alaoui-Jamali, M.A. and Qiang, H. (2003) The interface between ErbB and non-ErbB receptors in tumor invasion: clinical implications and opportunities for target discovery. Drug Resist Updat, 6, 95–107.

    Article  PubMed  CAS  Google Scholar 

  24. Urbanelli, L., Ronchini, C., Fontana, L., Menard, S., Orlandi, R., and Monaci, P. (2001) Targeted gene transduction of mammalian cells expressing the HER2/neu receptor by filamentous phage. J Mol Biol, 313, 965–976.

    Article  PubMed  CAS  Google Scholar 

  25. Karasseva, N.G., Glinsky, V.V., Chen, N.X., Komatireddy, R., and Quinn, T.P. (2002) Identification and characterization of peptides that bind human ErbB-2 selected from a bacteriophage display library. J Protein Chem, 21, 287–296.

    Article  PubMed  CAS  Google Scholar 

  26. Folkman, J. (2002) Role of angiogenesis in tumor growth and metastasis. Semin Oncol, 29, 15–18.

    PubMed  CAS  Google Scholar 

  27. Pasqualini, R. and Ruoslahti, E. (1996) Organ targeting in vivo using phage display peptide libraries. Nature, 380, 364–366.

    Article  PubMed  CAS  Google Scholar 

  28. Pasqualini, R., Koivunen, E., and Ruoslahti, E. (1997) Alpha v integrins as receptors for tumor targeting by circulating ligands. Nat Biotechnol, 15, 542–546.

    Article  PubMed  CAS  Google Scholar 

  29. Pasqualini, R., Koivunen, E., Kain, R., Lahdenranta, J., Sakamoto, M., Stryhn, A., Ashmun, R.A., Shapiro, L.H., Arap, W., and Ruoslahti, E. (2000) Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res, 60, 272–722.

    Google Scholar 

  30. Arap, W., Pasqualini, R., and Ruoslahti, E. (1998) Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science, 279, 377–380.

    Article  PubMed  CAS  Google Scholar 

  31. de Groot, F.M., Broxterman, H.J., Adams, H.P., van Vliet, A., Tesser, G.I., Elderkamp, Y.W., Schraa, A.J., Kok, R.J., Molema, G., Pinedo, H.M., and Scheeren, H.W. (2002) Design, synthesis, and biological evaluation of a dual tumor-specific motive containing integrin-targeted plasmin-cleavable doxorubicin prodrug. Mol Cancer Ther, 1, 901–911.

    PubMed  Google Scholar 

  32. Cheng, J.Q., Jiang, X., Fraser, M., Li, M., Dan, H.C., Sun, M., and Tsang, B.K. (2002) Role of X-linked inhibitor of apoptosis proteins in chemoresistance in ovarian cancer: possible involvement of the phosphoinositide-3 kinase/Akt pathway. Drug Resist Updat, 5, 131–146.

    Article  PubMed  CAS  Google Scholar 

  33. Su, Z.F., Liu, G., Gupta, S., Zhu, Z., Rusckowski, M., and Hnatowich, D.J. (2002) In vitro and in vivo evaluation of a Technetium-99m-labeled cyclic RGD peptide as a specific marker of alpha(v)beta(3) integrin for tumor imaging. Bioconjug Chem, 13, 561–570.

    Article  PubMed  CAS  Google Scholar 

  34. Wang, X.L., Xu, R., Wu, X., Gillespie, D., Jensen, R., and Lu, Z.R. (2009) Targeted systemic delivery of a therapeutic siRNA with a multifunctional carrier controls tumor proliferation in mice. Mol Pharm, 6, 738–746.

    Article  PubMed  CAS  Google Scholar 

  35. Schiffelers, R.M., Ansari, A., Xu, J., Zhou, Q., Tang, Q., Storm, G., Molema, G., Lu, P.Y., Scaria, P.V., and Woodle, M.C. (2004) Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucl Acids Res, 32, e149.

    Article  PubMed  Google Scholar 

  36. Shadidi, M. and Sioud, M. (2003) Identification of novel carrier peptides for the specific delivery of therapeutics into cancer cells. FASEB J, 17, 256–258.

    PubMed  CAS  Google Scholar 

  37. Wang, X.F., Birringer, M., Dong, L.F. et al. (2007) A peptide conjugate of vitamin E succinate targets breast cancer cells with high ErbB2 expression. Cancer Res, 67, 3337–3344.

    Article  PubMed  CAS  Google Scholar 

  38. Körner, M. and Reubi, J.C. (2007) NPY receptors in human cancer: a review of current knowledge. Peptides, 28, 419–425.

    Article  PubMed  Google Scholar 

  39. Riccabona, G. and Decristoforo, C. (2003) Peptide targeted imaging of cancer. Cancer Biother Radiopharm, 18, 675–687.

    Article  PubMed  CAS  Google Scholar 

  40. Hoffman, T.J., Quinn, T.P., and Volkert, W.A. (2001) Radiometallated receptor-avid peptide conjugates for specific in vivo targeting of cancer cells. Nucl Med Biol, 28, 527–539.

    Article  PubMed  CAS  Google Scholar 

  41. Dharap, S.S. and Minko, T. (2003) Targeted proapoptotic LHRH-BH3 peptide. Pharm Res, 20, 889–896.

    Article  PubMed  CAS  Google Scholar 

  42. Shir, A. and Levitzki, A. (2001) Gene therapy for glioblastoma: future perspective for delivery systems and molecular targets. Cell Mol Neurobiol, 21, 645–656.

    Article  PubMed  CAS  Google Scholar 

  43. Dharap, S.S., Wang, Y., Chandna, P., Khandare, J.J., Qiu, B., Gunaseelan, S., Sinko, P.J., Stein, S., Farmanfarmaian, A., and Minko, T. (2005) Tumor-specific targeting of an anticancer drug delivery system by LHRH peptide. PNAS, 102, 12962–12967.

    Article  PubMed  CAS  Google Scholar 

  44. Kim, S.H., Jeong, J.H., Lee, S.H., Kim, S.W., and Park, T.G. (2008) LHRH receptor-mediated delivery of siRNA using polyelectrolyte complex micelles self-assembled from siRNA-PEG-LHRH conjugate and PEI. Bioconjug Chem, 19, 2156–2162.

    Article  PubMed  CAS  Google Scholar 

  45. Huang, P.S. and Oliff, A. (2001) Drug-targeting strategies in cancer therapy. Curr Opin Genet Develop, 11, 104–110.

    Article  CAS  Google Scholar 

  46. Behlke, M.A. (2009) Chemical modification of siRNAs for in vivo use. Oligonucleotides, 18, 305–319.

    Article  Google Scholar 

  47. Soutschek, J., Akinc, A., Bramlage, B., Charisse, K., Constien, R., Donoghue, M., Elbashir, S., Geick, A., Hadwiger, P., Harborth, J., John, M., Kesavan, V., Lavine, G., Pandey, R.K., Racie, T., Rajeev, K.G., Röhl, I., Toudjarska, I., Wang, G., Wuschko, S., Bumcrot, D., Koteliansky, V., Limmer, S., Manoharan, M., and Vornlocher, H.P. (2004) Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature, 432, 173–178.

    Article  PubMed  CAS  Google Scholar 

  48. Yoshizawa, T., Hattori, Y., Hakoshima, M., Koga, K., and Maitani, Y. (2008) Folate-linked lipid-based nanoparticles for synthetic siRNA delivery in KB tumor xenografts. Eur J Pharm Biopharm, 70, 718–725.

    Article  PubMed  CAS  Google Scholar 

  49. Mikat, V. and Heckel, A. (2007) Light-dependent RNA interference with nucleobase-caged siRNAs. RNA, 13, 2341–2347.

    Article  PubMed  CAS  Google Scholar 

  50. Casey, J.P., Blidner, R.A., and Monroe, W.T. (2009) Caged siRNAs for spatiotemporal control of gene silencing. Mol Pharm, 6, 669–685.

    Article  PubMed  CAS  Google Scholar 

  51. Tuerk, C. and Gold, L. (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 249, 505–510.

    Article  PubMed  CAS  Google Scholar 

  52. McNamara, J.O., Andrechek, E.R., Wang, Y., Viles, K.D., Rempel, E.R., Gilboa, E., Sullenger, B.A., and Giangrande, P.H. (2006) Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat Biotechnol, 24, 1005–1015.

    Article  PubMed  CAS  Google Scholar 

  53. Chu, T.C., Twu, K.Y., Ellington, A.D., and Levy, M. (2006) Aptamer mediated siRNA delivery. Nucl Acids Res, 34, e73.

    Article  PubMed  Google Scholar 

  54. Zhou, J., Li, H., Li, S., Zaia, J., and Rossi, J.J. (2008) Novel dual inhibitory function aptamer-siRNA delivery system for HIV-1 therapy. Mol Ther, 16, 1481–1489.

    Article  PubMed  CAS  Google Scholar 

  55. Wullner, U., Neef, I., Eller, A., Kleines, M., Tur, M.K., and Barth, S. (2008) Cell-specific induction of apoptosis by rationally designed bivalent aptamer-siRNA transcripts silencing eukaryotic elongation factor 2. Curr Cancer Drug Targets, 8, 554–565.

    Article  PubMed  CAS  Google Scholar 

  56. Hannon, G.J. and Rossi, J.J. (2004) Unlocking the potential of the human genome with RNA interference. Nature, 431, 371–378.

    Article  PubMed  CAS  Google Scholar 

  57. Grimm, D., Streetz, K.L., Jopling, C.L., Storm, T.A., Pandey, K., Davis, C.R., Marion, P., Salazar, F., and Kay., M.A. (2006) Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature, 441, 537–541.

    Article  PubMed  CAS  Google Scholar 

  58. Jackson, A.L., Bartz, S.R., Schelter, J., Kobayashi, S.V., Burchard, J., Mao, M., Li, B., Cavet, G., and Linsley., P.S. (2003) Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol, 21, 635–637.

    Article  PubMed  CAS  Google Scholar 

  59. Lin, X., Ruan, X., Anderson, M.G., McDowell, J.A., Kroeger, P.E., Fesik, S.W., and Shen., Y. (2005) siRNA-mediated off-target gene silencing triggered by a 7 nt complementation. Nucl Acids Res, 33, 4527–4535.

    Article  PubMed  CAS  Google Scholar 

  60. Van de Wetering, M. et al. (2003) Specific inhibition of gene expression using a stably integrated, inducible small-interfering-RNA vector. EMBO Rep, 4, 609–615.

    Article  PubMed  Google Scholar 

  61. McIntyre, G.J. and Fanning., G.C. (2006) Design and cloning strategies for constructing shRNA expression vectors. BMC Biotechnol, 6, 1.

    Article  PubMed  Google Scholar 

  62. Saukkonen, K. and Hemminki, A. (2004) Tissue-specific promoters for cancer gene therapy. Expert Opin Biol Ther, 4, 683–696.

    Article  PubMed  CAS  Google Scholar 

  63. Altieri, D.C. (2003) Validating survivin as a cancer therapeutic target. Nat Rev Cancer, 3, 46–54.

    Article  PubMed  CAS  Google Scholar 

  64. Huynh, T., Wälchli, S., and Sioud., M. (2006) Transcriptional targeting of small interfering RNAs into cancer cells. Biochem Biophys Res Commun, 350, 854–859.

    Article  PubMed  CAS  Google Scholar 

  65. Song, J., Pang, S., Lu, Y., Yokoyama, K.K., Zheng, J.Y., and Chiu, R. (2004) Gene silencing in androgen-responsive prostate cancer cells from the tissue-specific prostate-specific antigen promoter. Cancer Res, 64, 7661–7663.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sioud, M. (2010). What Are the Key Targeted Delivery Technologies of siRNA Now?. In: Sioud, M. (eds) RNA Therapeutics. Methods in Molecular Biology, vol 629. Humana Press. https://doi.org/10.1007/978-1-60761-657-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-657-3_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-656-6

  • Online ISBN: 978-1-60761-657-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics