Skip to main content

cDNA Libraries for Virus-Induced Gene Silencing

  • Protocol
  • First Online:
Plant Epigenetics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 631))

Abstract

Virus-induced gene silencing (VIGS) exploits endogenous plant antiviral defense mechanisms to posttranscriptionally silence the expression of targeted plant genes. VIGS is quick and relatively easy to perform and therefore serves as a powerful tool for high-throughput functional genomics in plants. Combined with the use of subtractive cDNA libraries for generating a collection of VIGS-ready cDNA inserts, VIGS can be utilized to screen a large number of genes to determine phenotypes resulting from the knockdown/knockout of gene function. Taking into account the optimal insert design for VIGS, we describe a methodology for producing VIGS-ready cDNA libraries enriched for inserts relevant to the biological process of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vance V, Vaucheret H (2001) RNA silencing in plants-defense and counterdefense. Science 292:2277–2280

    Article  CAS  PubMed  Google Scholar 

  2. Voinnet O (2001) RNA silencing as a plant immune system against viruses. Trends Genet 17:449–459

    Article  CAS  PubMed  Google Scholar 

  3. Waterhouse PM, Wang MB, Lough T (2001) Gene silencing as an adaptive defence against viruses. Nature 411:834–842

    Article  CAS  PubMed  Google Scholar 

  4. Baulcombe DC (1999) Fast forward genetics based on virus-induced gene silencing. Curr Opin Plant Biol 2:109–113

    Article  CAS  PubMed  Google Scholar 

  5. Burch-Smith TM, Anderson JC, Martin GB, Dinesh-Kumar SP (2004) Applications and advantages of virus-induced gene silencing for gene function studies in plants. Plant J 39:734–746

    Article  CAS  PubMed  Google Scholar 

  6. Godge MR, Purkayastha A, Dasgupta I, Kumar PP (2008) Virus-induced gene silencing for functional analysis of selected genes. Plant Cell Rep 27:209–219

    Article  CAS  PubMed  Google Scholar 

  7. Kumagai MH, Donson J, della-Cioppa G, Harvey D, Hanley K, Grill LK (1995) Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proc Natl Acad Sci USA 92:1679–1683

    Article  CAS  PubMed  Google Scholar 

  8. Ruiz MT, Voinnet O, Baulcombe DC (1998) Initiation and maintenance of virus-induced gene silencing. Plant Cell 10:937–946

    Article  CAS  PubMed  Google Scholar 

  9. Kjemtrup S, Sampson KS, Peele CG, Nguyen LV, Conkling MA, Thompson WF et al (1998) Gene silencing from plant DNA carried by a geminivirus. Plant J 14:91–100

    Article  CAS  PubMed  Google Scholar 

  10. Liu Y, Schiff M, Dinesh-Kumar SP (2002) Virus-induced gene silencing in tomato. Plant J 31:777–786

    Article  CAS  PubMed  Google Scholar 

  11. Fitzmaurice WP, Holzberg S, Lindbo JA, Padgett HS, Palmer KE, Wolfe GM et al (2002) Epigenetic modification of plants with systemic RNA viruses. Omics 6:137–151

    Article  CAS  PubMed  Google Scholar 

  12. Saedler R, Baldwin IT (2004) Virus-induced gene silencing of jasmonate-induced direct defences, nicotine and trypsin proteinase-inhibitors in Nicotiana attenuata. J Exp Bot 55:151–157

    Article  CAS  PubMed  Google Scholar 

  13. Brigneti G, Martin-Hernandez AM, Jin H, Chen J, Baulcombe DC, Baker B et al (2004) Virus-induced gene silencing in Solanum species. Plant J 39:264–272

    Article  CAS  PubMed  Google Scholar 

  14. Dong Y, Burch-Smith TM, Liu Y, Mamillapalli P, Dinesh-Kumar SP (2007) A ligation-independent cloning tobacco rattle virus vector for high-throughput virus-induced gene silencing identifies roles for NbMADS4-1 and -2 in floral development. Plant Physiol 145:1161–1170

    Article  CAS  PubMed  Google Scholar 

  15. Senthil-Kumar M, Hema R, Anand A, Kang L, Udayakumar M, Mysore KS (2007) A systematic study to determine the extent of gene silencing in Nicotiana benthamiana and other Solanaceae species when heterologous gene sequences are used for virus-induced gene silencing. New Phytol 176:782–791

    Article  CAS  PubMed  Google Scholar 

  16. Romeis T, Ludwig AA, Martin R, Jones JD (2001) Calcium-dependent protein kinases play an essential role in a plant defence response. EMBO J 20:5556–5567

    Article  CAS  PubMed  Google Scholar 

  17. Liu Y, Schiff M, Marathe R, Dinesh-Kumar SP (2002) Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J 30:415–429

    Article  CAS  PubMed  Google Scholar 

  18. Peart JR, Cook G, Feys BJ, Parker JE, Baulcombe DC (2002) An EDS1 orthologue is required for N-mediated resistance against tobacco mosaic virus. Plant J 29:569–579

    Article  CAS  PubMed  Google Scholar 

  19. Peart JR, Lu R, Sadanandom A, Malcuit I, Moffett P, Brice DC et al (2002) Ubiquitin ligase-associated protein SGT1 is required for host and nonhost disease resistance in plants. Proc Natl Acad Sci USA 99:10865–10869

    Article  CAS  PubMed  Google Scholar 

  20. Liu Y, Schiff M, Serino G, Deng XW, Dinesh-Kumar SP (2002) Role of SCF ubiquitin-ligase and the COP9 signalosome in the N gene-mediated resistance response to tobacco mosaic virus. Plant Cell 14:1483–1496

    Article  CAS  PubMed  Google Scholar 

  21. Lu R, Malcuit I, Moffett P, Ruiz MT, Peart J, Wu AJ et al (2003) High throughput virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance. EMBO J 22:5690–5699

    Article  CAS  PubMed  Google Scholar 

  22. Peart JR, Mestre P, Lu R, Malcuit I, Baulcombe DC (2005) NRG1, a CC-NB-LRR protein, together with N, a TIR-NB-LRR protein, mediates resistance against tobacco mosaic virus. Curr Biol 15:968–973

    Article  CAS  PubMed  Google Scholar 

  23. Borras-Hidalgo O, Thomma BP, Collazo C, Chacon O, Borroto CJ, Ayra C et al (2006) EIL2 transcription factor and glutathione synthetase are required for defense of tobacco against tobacco blue mold. Mol Plant Microbe Interact 19:399–406

    Article  CAS  PubMed  Google Scholar 

  24. Gabriels SH, Takken FL, Vossen JH, de Jong CF, Liu Q, Turk SC et al (2006) cDNA-AFLP combined with functional analysis reveals novel genes involved in the hypersensitive response. Mol Plant Microbe Interact 19:567–576

    Article  CAS  PubMed  Google Scholar 

  25. Kim KJ, Lim JH, Lee S, Kim YJ, Choi SB, Lee MK et al (2007) Functional study of Capsicum annuum fatty acid desaturase 1 cDNA clone induced by Tobacco mosaic virus via microarray and virus-induced gene silencing. Biochem Biophys Res Commun 362:554–561

    Article  CAS  PubMed  Google Scholar 

  26. Anand A, Vaghchhipawala Z, Ryu CM, Kang L, Wang K, del-Pozo O et al (2007) Identification and characterization of plant genes involved in Agrobacterium-mediated plant transformation by virus-induced gene silencing. Mol Plant Microbe Interact 20:41–52

    Article  CAS  PubMed  Google Scholar 

  27. Ratcliff F, Martin-Hernandez AM, Baulcombe DC (2001) Technical Advance. Tobacco rattle virus as a vector for analysis of gene function by silencing. Plant J 25:237–245

    Article  CAS  PubMed  Google Scholar 

  28. Liu Y, Nakayama N, Schiff M, Litt A, Irish VF, Dinesh-Kumar SP (2004) Virus induced gene silencing of a DEFICIENS ortholog in Nicotiana benthamiana. Plant Mol Biol 54:701–711

    Article  CAS  PubMed  Google Scholar 

  29. Liu E, Page JE (2008) Optimized cDNA libraries for virus-induced gene silencing (VIGS) using tobacco rattle virus. Plant Methods 4:5

    Article  PubMed  Google Scholar 

  30. Dinesh-Kumar SP, Anandalakshmi R, Marathe R, Schiff M, Liu Y (2003) Virus-induced gene silencing. Methods Mol Biol 236:287–294

    CAS  PubMed  Google Scholar 

  31. Ausubel FM (2002) Short protocols in molecular biology: a compendium of methods from Current protocols in molecular biology, 5th edn. Wiley, New York

    Google Scholar 

  32. MacFarlane SA (1999) Molecular biology of the tobraviruses. J Gen Virol 80:2799–2807

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to S. Dinesh-Kumar (Yale University) for generously providing the TRV vectors. We also thank the DNA Service Unit at NRC-PBI for EST sequencing, Jacek Nowak and Kannan Vijayan for bioinformatic analysis, and Sandra Polvi for assistance in plant cultivation. This is manuscript NRCC #50134.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Todd, A.T., Liu, E., Page, J.E. (2010). cDNA Libraries for Virus-Induced Gene Silencing. In: Kovalchuk, I., Zemp, F. (eds) Plant Epigenetics. Methods in Molecular Biology™, vol 631. Humana Press. https://doi.org/10.1007/978-1-60761-646-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-646-7_16

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-645-0

  • Online ISBN: 978-1-60761-646-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics