Skip to main content

Bioinformatic Approaches to the Identification of Novel Neuropeptide Precursors

  • Protocol
  • First Online:
Peptidomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 615))

Abstract

With the entire genome sequence of several animals now available, it is becoming possible to identify in silico all putative peptides and their precursors in an organism. In this chapter we describe a searching algorithm that can be used to scan the genome for predicted proteins with the structural hallmarks of (neuro)peptide precursors. We also describe how to use search strings such as the presence of a glycine residue as a putative amidation site, dibasic cleavage sites, the presence of a signal peptide, and specific peptide motifs to improve a standard BLAST search and make it suitable for searching (neuro)peptides in EST data. We briefly explain how bioinformatic tools and in silico predicted peptide precursor sequences can aid experimental peptide identification with mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hewes, R.S. and Taghert, P.H. (2001) Neuropeptides and neuropeptide receptors in the Drosophila melanogaster genome. Genome Res. 11, 1126–1142.

    Article  PubMed  CAS  Google Scholar 

  2. Vanden Broeck, J. (2001) Neuropeptides and their precursors in the fruitfly, Drosophila melanogaster. Peptides 22, 241–254.

    Article  PubMed  CAS  Google Scholar 

  3. Liu, F., Baggerman, G., Schoofs, L., and Wets, G. (2006) Uncovering conserved patterns in bioactive peptides in Metazoa. Peptides 27, 3137–3153.

    Article  PubMed  CAS  Google Scholar 

  4. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402.

    Article  PubMed  CAS  Google Scholar 

  5. Altschul, S.F., Bundschuh, R., Olsen, R., and Hwa, T. (2001) The estimation of statistical parameters for local alignment score distributions. Nucleic Acids Res. 29, 351–361.

    Article  PubMed  CAS  Google Scholar 

  6. Liu, F., Baggerman, G., D‘Hertog, W., Verleyen, P., Schoofs, L., and Wets, G. (2006) In silico identification of new secretory peptide genes in Drosophila melanogaster. Mol. Cell. Proteomics 5, 510–522.

    PubMed  CAS  Google Scholar 

  7. Clynen, E., Huybrechts, J., Verleyen, P., De Loof, A., and Schoofs, L. (2006) Annotation of novel neuropeptide precursors in the migratory locust based on transcript screening of a public EST database and mass spectrometry. BMC Genom. 7, 201.

    Article  Google Scholar 

  8. Fälth, M., Skold, K., Norrman, M., Svensson, M., Fenyo, D., and Andren, P.E. (2006) SwePep, a database designed for endogenous peptides and mass spectrometry. Mol. Cell. Proteomics 5, 998–1005.

    Article  PubMed  Google Scholar 

  9. Liu, F., Baggerman, G., Schoofs, L., and Wets, G. (2008) The construction of a bioactive peptide database in Metazoa. J. Proteome Res. 7, 4119–4131.

    Article  PubMed  CAS  Google Scholar 

  10. Hild, M., Beckmann, B., Haas, S.A., Koch, B., Solovyev, V., Busold, C., Fellenberg, K., Boutros, M., Vingron, M., Sauer, F., Hoheisel, J.D., and Paro, R. (2003) An integrated gene annotation and transcriptional profiling approach towards the full gene content of the Drosophila genome. Genome Biol. 5, R3.

    Article  PubMed  CAS  Google Scholar 

  11. Bendtsen, J.D., Nielsen, H., von Heijne, G., and Brunak, S. (2004) Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340, 783–795.

    Article  PubMed  Google Scholar 

  12. Veenstra, J.A. (2000) Mono- and dibasic proteolytic cleavage sites in insect neuroendocrine peptide precursors. Arch. Insect Biochem. Physiol. 43, 49–63.

    Article  PubMed  CAS  Google Scholar 

  13. Perkins, D.N., Pappin, D.J., Creasy, D.M., and Cottrell, J.S. (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567.

    Article  PubMed  CAS  Google Scholar 

  14. Ma, B., Zhang, K., Hendrie, C., Liang, C., Li, M., Doherty-Kirby, A., and Lajoie, G. (2003) PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun. Mass Spectrom. 17, 2337–2342.

    Article  PubMed  CAS  Google Scholar 

  15. Rholam, M., Brakch, N., Germain, D., Thomas, D.Y., Fahy, C., Boussetta, H., Boileau, G., and Cohen, P. (1995) Role of amino acid sequences flanking dibasic cleavage sites in precursor proteolytic processing. The importance of the first residue C-terminal of the cleavage site. Eur. J. Biochem. 227, 707–714.

    Article  PubMed  CAS  Google Scholar 

  16. Duckert, P., Brunak, S., and Blom, N. (2004) Prediction of proprotein convertase cleavage sites. Protein Eng. Des. Sel. 17, 107–112.

    Article  PubMed  CAS  Google Scholar 

  17. Southey, B.R., Amare, A., Zimmerman, T.A., Rodriguez-Zas, S.L., and Sweedler, J.V. (2006) NeuroPred: a tool to predict cleavage sites in neuropeptide precursors and provide the masses of the resulting peptides. Nucleic Acids Res. 34, W267–W272.

    Article  PubMed  CAS  Google Scholar 

  18. Seidah, N.G., Benjannet, S., Wickham, L., Marcinkiewicz, J., Jasmin, S.B., Stifani, S., Basak, A., Prat, A., and Chretien, M. (2003) The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc. Natl. Acad. Sci. USA 100, 928–933.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants of the Fund for Scientific Research (FWO)-Flanders (1.5.137.06) and the Institute for the Promotion of Innovation through Science and Technology (IWT)-Flanders (SBO 335605). The authors also acknowledge Prometa, the Interfacultary Centre for Proteomics and Metabolomics at K.U. Leuven. E. Clynen and S.J. Husson are postdoctoral fellows of the FWO-Flanders and B. Landuyt is a postdoctoral fellow of the IWT-Flanders.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Clynen, E. et al. (2010). Bioinformatic Approaches to the Identification of Novel Neuropeptide Precursors. In: Soloviev, M. (eds) Peptidomics. Methods in Molecular Biology, vol 615. Humana Press. https://doi.org/10.1007/978-1-60761-535-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-535-4_25

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-534-7

  • Online ISBN: 978-1-60761-535-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics