Skip to main content

The Therapeutic Potential of LNA-modified siRNAs: Reduction of Off-target Effects by Chemical Modification of the siRNA Sequence

  • Protocol
  • First Online:
siRNA and miRNA Gene Silencing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 487))

Abstract

Post-transcriptional gene silencing mediated by double-stranded RNA represents an evolutionarily conserved cellular mechanism. Small dsRNAs, such as microRNAs (miRNAs), are part of the main regulatory mechanisms of gene expression in cells. The possibilities of harnessing this intrinsic natural mechanism of gene silencing for therapeutic applications was opened up by the discovery by Tom Tuschl’s team a few years ago that chemically synthesized small 21-mers of double-stranded RNA (small interfering RNA, siRNA) could inhibit gene expression without induction of cellular antiviral-like responses. siRNAs are especially of interest for cancer therapeutics because they allow specific inhibition of mutated oncogenes and other genes that aid and abet the growth of cancer cells. However, recent insights make it clear that siRNA faces some major hurdles before it can be used as a drug. Some of these problems are similar to those associated with classic antisense approaches, such as lack of delivery to specific tissues (other than the liver) or tumors, while other problems are more specific for siRNA, such as stability of the RNA molecules in circulation, off-target effects, interference with the endogenous miRNA machinery, and immune responses toward dsRNA. Chemical modifications of siRNA may help prevent these unwanted side effects. Initial studies show that minimal modifications with locked nucleic acids (LNA) help to reduce most of the unwanted side effects. In this chapter we will explore the limitations and possibilities of LNA-modified siRNA that may be used in future therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fire A., Xu S., Montgomery M.K., Kostas S.A., Driver S.E., and Mello C.C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811.

    Article  PubMed  CAS  Google Scholar 

  2. Meister G. and Tuschl T. (2004) Mechanisms of gene silencing by double-stranded RNA.Nature 431, 343–349.

    Article  PubMed  CAS  Google Scholar 

  3. Jackson R.J. and Standart N. (2007) How do microRNAs regulate gene expression? Sci. Stke.367, rel; DOI: 10.1126/stke.3672007rel.

    Article  Google Scholar 

  4. Berezikov E., Thuemmler F., van Laake L.W., Kondova I., Bontrop R., Cuppen E., and Plasterk R.H. (2006) Diversity of microRNAs in human and chimpanzee brain.Nat. Genet. 38, 1375–1377.

    Article  PubMed  CAS  Google Scholar 

  5. Elbashir S.M., Harborth J., Lendeckel W., Yalcin A., Weber K., and Tuschl T. (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells.Nature 411, 494–498.

    Article  PubMed  CAS  Google Scholar 

  6. Crooke S.T. (1999) Molecular mechanisms of action of antisense drugs.Biochim. Biophys. Acta 1489, 31–44.

    PubMed  CAS  Google Scholar 

  7. Mahato R.I., Cheng K., and Guntaka R.V. (2005) Modulation of gene expression by antisense and antigene oligodeoxynucleotides and small interfering RNA.Expert Opin. Drug Deliv. 2, 3–28.

    Article  PubMed  CAS  Google Scholar 

  8. Amarzguioui M., Holen T., Babaie E., and Prydz H. (2003) Tolerance for mutations and chemical modifications in a siRNA.Nucleic Acids Res. 31, 589–595.

    Article  PubMed  CAS  Google Scholar 

  9. Braasch D.A., Jensen S., Liu Y., Kaur K., Arar K., White M.A., and Corey D.R. (2003) RNA interference in mammalian cells by chemically-modified RNA.Biochemistry 42, 7967–7975.

    Article  PubMed  CAS  Google Scholar 

  10. Czauderna F., Fechtner M., Dames S., Aygun H., Klippel A., Pronk G.J., Giese K., and Kaufmann J. (2003) Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells.Nucleic Acids Res. 31, 2705–2716.

    Article  PubMed  CAS  Google Scholar 

  11. Harborth J., Elbashir S.M., Vandenburgh K., Manninga H., Scaringe S.A., Weber K., and Tuschl T. (2003) Sequence, chemical, and structural variation of small interfering RNAs and short hairpin RNAs and the effect on mammalian gene silencing.Antisense Nucleic Acid Drug Dev. 13, 83–105.

    Article  PubMed  CAS  Google Scholar 

  12. Fluiter K., ten Asbroek A.L., de Wissel M.B., Jakobs M.E., Wissenbach M., Olsson H., Olsen O., Oerum H., and Baas F. (2003) In vivo tumor growth inhibition and biodistribution studies of locked nucleic acid (LNA) antisense oligonucleotides.Nucleic Acids Res. 31, 953–962.

    Article  PubMed  CAS  Google Scholar 

  13. Elmen J., Thonberg H., Ljungberg K., Frieden M., Westergaard M., Xu Y., Wahren B., Liang Z., Orum H., Koch T., and Wahlestedt C. (2005) Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality.Nucleic Acids Res. 33, 439–447.

    Article  PubMed  CAS  Google Scholar 

  14. Mook O.R., Baas F., de Wissel M.B., and Fluiter K. (2007) Evaluation of locked nucleic acid-modified small interfering RNA in vitro and in vivo.Mol. Cancer Ther. 6, 833–843.

    Article  PubMed  CAS  Google Scholar 

  15. Martinez J. and Tuschl T. (2004) RISC is a 5′ phosphomonoester-producing RNA endonuclease Genes Dev. 18, 975–980.

    Article  PubMed  CAS  Google Scholar 

  16. Leuschner P.J., Ameres S.L., Kueng S., and Martinez J. (2006) Cleavage of the siRNA passenger strand during RISC assembly in human cells.EMBO Rep. 7, 314–320.

    Article  PubMed  CAS  Google Scholar 

  17. Jackson A.L., Burchard J., Leake D., Reynolds A., Schelter J., Guo J., Johnson J.M., Lim L., Karpilow J., Nichols K., Marshall W., Khvorova A., and Linsley P.S. (2006) Position-specific chemical modification of siRNAs reduces “off-target” transcript silencing.RNA 12, 1197–205.

    Article  PubMed  CAS  Google Scholar 

  18. Boutla A., Delidakis C., Livadaras I., Tsagris M., and Tabler M. (2001) Short 5′-phosphorylated double-stranded RNAs induce RNA interference in Drosophila Curr. Biol. 11, 1776–1780.

    Article  PubMed  CAS  Google Scholar 

  19. Harborth J., Elbashir S.M., Vandenburgh K., Manninga H., Scaringe S.A., Weber K., and Tuschl T. (2003) Sequence, chemical, and structural variation of small interfering RNAs and short hairpin RNAs and the effect on mammalian gene silencing.Antisense Nucleic Acid Drug Dev. 13, 83–105.

    Article  PubMed  CAS  Google Scholar 

  20. Saxena S., Jonsson Z.O., and Dutta A. (2003) Small RNAs with imperfect match to endogenous mRNA repress translation. Implications for off-target activity of small inhibitory RNA in mammalian cells.J. Biol. Chem. 278, 44312–44319.

    Article  PubMed  CAS  Google Scholar 

  21. Jackson A.L., Bartz S.R., Schelter J., Kobayashi S.V., Burchard J., Mao M., Li B., Cavet G., and Linsley P.S. (2003) Expression profiling reveals off target gene regulation by RNAi.Nat. Biotechnol. 21, 635–637.

    Article  PubMed  CAS  Google Scholar 

  22. Sledz C.A., Holko M., de Veer M.J., Silverman R.H., and Williams B.R. (2003) Activation of the interferon system by short-interfering RNAs.Nat. Cell Biol. 5, 834–839.

    Article  PubMed  CAS  Google Scholar 

  23. Bridge A.J., Pebernard S., Ducraux A., Nicoulaz A.L., and Iggo R. (2003) Induction of an interferon response by RNAi vectors in mammalian cells.Nat. Genet. 34, 263–264.

    Article  PubMed  CAS  Google Scholar 

  24. Jackson A.L., Burchard J., Schelter J., Chau B.N., Cleary M., Lim L., and Linsley P.S. (2006) Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity.RNA 12, 1179–1187.

    Article  PubMed  CAS  Google Scholar 

  25. Lewis B.P., Burge C.B., and Bartel D.P. (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets.Cell 120, 15–20.

    Article  PubMed  CAS  Google Scholar 

  26. Lewis B.P., Shih I.H., Jones-Rhoades M.W., Bartel D.P., and Burge C.B. (2003) Prediction of mammalian microRNA targets.Cell 115, 787–798.

    Article  PubMed  CAS  Google Scholar 

  27. Birmingham A., Anderson E.M., Reynolds A., Ilsley-Tyree D., Leake D., Fedorov Y., Baskerville S., Maksimova E., Robinson K., Karpilow J., Marshall W.S., and Khvorova A. (2006) 3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets Nat. Methods 3, 199–204.

    Article  PubMed  CAS  Google Scholar 

  28. Lim L.P., Lau N.C., Garrett-Engele P., Grimson A., Schelter J.M., Castle J., Bartel D.P., Linsley P.S., and Johnson J.M. (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs.Nature 433, 769–773.

    Article  PubMed  CAS  Google Scholar 

  29. Lin X., Ruan X., Anderson M.G., McDowell J.A., Kroeger P.E., Fesik S.W., and Shen Y. (2005) siRNA-mediated off-target gene silencing triggered by a 7 nt complementation.Nucleic Acids Res. 33, 4527–4535.

    Article  PubMed  CAS  Google Scholar 

  30. Xie X., Lu J., Kulbokas E.J., Golub T.R., Mootha V., Lindblad-Toh K., Lander E.S., and Kellis M. (2005) Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals Nature 434, 338–345.

    Article  PubMed  CAS  Google Scholar 

  31. Brennecke J., Stark A., Russell R.B., Cohen S.M. (2005) Principles of microRNA-target recognition.PLoS Biol. 3, e85.

    Article  PubMed  Google Scholar 

  32. Amarzguioui M., Holen T., Babaie E., and Prydz H. (2003) Tolerance for mutations and chemical modifications in a siRNA.Nucleic Acids Res. 31, 589–595.

    Article  PubMed  CAS  Google Scholar 

  33. Bramsen J.B., Laursen M.B., Damgaard C.K., Lena S.W., Babu B.R., Wengel J., and Kjems J. (2007) Improved silencing properties using small internally segmented interfering RNAs.Nucleic Acids Res. 35, 5886–5897

    Article  PubMed  CAS  Google Scholar 

  34. Matranga C., Tomari Y., Shin C., Bartel D.P., and Zamore P.D. (2005) Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes.Cell 123, 607–620.

    Article  PubMed  CAS  Google Scholar 

  35. Grimm D., Streetz K.L., Jopling C.L., Storm T.A., Pandey K., Davis C.R., Marion P., Salazar F., and Kay M.A. (2006) Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways.Nature 441, 537–541.

    Article  PubMed  CAS  Google Scholar 

  36. Schlee M., Hornung V., and Hartmann G. (2006) siRNA and isRNA: Two edges of one sword.Mol. Ther. 14, 463–470.

    Article  PubMed  CAS  Google Scholar 

  37. Judge A.D., Sood V., Shaw J.R., Fang D., McClintock K., and MacLachlan I. (2005) Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA.Nat. Biotechnol. 23, 457–462.

    Article  PubMed  CAS  Google Scholar 

  38. Alexopoulou L., Holt A.C., Medzhitov R., and Flavell R.A. (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3.Nature 413, 732–738.

    Article  PubMed  CAS  Google Scholar 

  39. Sioud M. (2005) Induction of inflammatory cytokines and interferon responses by double-stranded and single-stranded siRNAs is sequence-dependent and requires endosomal localization.J. Mol. Biol. 348, 1079–1090.

    Article  PubMed  CAS  Google Scholar 

  40. Marques J.T. and Williams B.R. (2005) Activation of the mammalian immune system by siRNAs.Nat. Biotechnol. 23, 1399–1405.

    Article  PubMed  CAS  Google Scholar 

  41. Hornung V., Guenthner-Biller M., Bourquin C., Ablasser A., Schlee M., Uematsu S., Noronha A., Manoharan M., Akira S., de Fougerolles A., Endres S., and Hartmann G. (2005) Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7.Nat. Med. 11, 263–270.

    Article  PubMed  CAS  Google Scholar 

  42. Judge A.D., Bola G., Lee A.C., and MacLachlan I. (2006) Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo.Mol. Ther. 13, 494–505.

    Article  PubMed  CAS  Google Scholar 

  43. Robbins M., Judge A., Liang L., McClintock K., Yaworski E., and Maclachlan I. (2007) 2′-O-methyl-modified RNAs Act as TLR7 Antagonists Mol. Ther. 15, 1663–1669.

    Article  PubMed  CAS  Google Scholar 

  44. Urban-Klein B., Werth S., Abuharbeid S., Czubayko F., and Aigner A. (2005) RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo.Gene Ther. 12, 461–466.

    Article  PubMed  CAS  Google Scholar 

  45. van de Water F.M., Boerman O.C., Wouterse A.C., Peters J.G., Russel F.G., and Masereeuw R. (2006) Intravenously administered short interfering RNA accumulates in the kidney and selectively suppresses gene function in renal proximal tubules.Drug Metab. Dispos. 34, 1393–1397.

    Article  PubMed  CAS  Google Scholar 

  46. Liua N., Dingb H., Vanderheydena J., Zhua Z., and Zhang Y. (2007) Radiolabeling small RNA with technetium-99m for visualizing cellular delivery and mouse biodistribution.Surgery 142, 262–269.

    Article  Google Scholar 

  47. Schiffelers R.M., Ansari A., Xu J., Zhou Q., Tang Q., Storm G., Molema G., Lu P.Y., Scaria P.V., Woodle M.C. (2004) Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle.Nucleic Acids Res. 32, e149.

    Article  PubMed  Google Scholar 

  48. Ma Z., Li J., He F., Wilson A., Pitt B., and Li S. (2005) Cationic lipids enhance siRNA-mediated interferon response in mice.Biochem. Biophys. Res. Commun. 330, 755–759.

    Article  PubMed  CAS  Google Scholar 

  49. Liu X., Howard K.A., Dong M., Andersen M.O., Rahbek U.L., Johnsen M.G., Hansen O.C., Besenbacher F., and Kjems J. (2007) The influence of polymeric properties on chitosan/siRNA nanoparticle formulation and gene silencing.Biomaterials 28, 1280–1288.

    Article  PubMed  CAS  Google Scholar 

  50. Soutschek J., Akinc A., Bramlage B., Charisse K., Constien R., Donoghue M., Elbashir S., Geick A., Hadwiger P., Harborth J., John M., Kesavan V., Lavine G., Pandey R.K., Racie T., Rajeev K.G., Rohl I., Toudjarska I., Wang G., Wuschko S., Bumcrot D., Koteliansky V., Limmer S., Manoharan M., and Vornlocher H.P. (2004) Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs.Nature 432, 173–178.

    Article  PubMed  CAS  Google Scholar 

  51. Krutzfeldt J., Rajewsky N., Braich R., Rajeev K.G., Tuschl T., Manoharan M., and Stoffel M. (2005) Silencing of microRNAs in vivo with ‘antagomirs’.Nature 438, 685–689.

    Article  PubMed  Google Scholar 

  52. Song E., Zhu P., Lee S.K., Chowdhury D., Kussman S., Dykxhoorn D.M., Feng Y., Palliser D., Weiner D.B., Shankar P., Marasco W.A., and Lieberman J. (2005) Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors.Nat. Biotechnol. 23, 709–717.

    Article  PubMed  CAS  Google Scholar 

  53. Fluiter K., Frieden M., Vreijling J., Rosenbohm C., De Wissel M.B., Christensen S.M., Koch T., Orum H., and Baas F. (2005) On the in vitro and in vivo properties of four locked nucleic acid nucleotides incorporated into an anti-H-Ras antisense oligonucleotide.Chembiochem 6, 1104–1109.

    Article  PubMed  CAS  Google Scholar 

  54. Sorensen M.D., Petersen M., and Wengel J. (2003) Functionalized LNA (locked nucleic acid): high-affinity hybridization of oligonucleotides containing N-acylated and N-alkylated 2′-amino-LNA monomers Chem. Commun. (Camb) 17, 2130–2131.

    Article  Google Scholar 

  55. Larson S.D., Jackson L.N., Chen L.A., Rychahou P.G., and Evers B.M. (2007) Effectiveness of siRNA uptake in target tissues by various delivery methods.Surgery 142, 262–269.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kees Fluiter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Fluiter , K., Mook , O., Baas , F. (2009). The Therapeutic Potential of LNA-modified siRNAs: Reduction of Off-target Effects by Chemical Modification of the siRNA Sequence. In: Sioud, M. (eds) siRNA and miRNA Gene Silencing. Methods in Molecular Biology, vol 487. Humana Press. https://doi.org/10.1007/978-1-60327-547-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-547-7_9

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-546-0

  • Online ISBN: 978-1-60327-547-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics