Skip to main content

An Affinity Oligonucleotide Displacement Strategy to Purify Ribonucleoprotein Complexes Applied to Human Telomerase

  • Protocol
RNA-Protein Interaction Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 488))

Summary

Antisense oligonucleotides have been used to study the structure and function of small nuclear ribonucleoprotein (snRNP) complexes and were adapted and modified for the purification of a variety of RNPs. We describe methods for recombinant expression and reconstitution of catalyti-cally active human telomerase and the purification of native and recombinant telomerase using antisense affinity oligonucleotides. The purification procedure involves binding of the RNP complex to NeutrAvidin beads via a biotinylated 2′-O-methyl (2′-OMe) RNA oligonucleotide complementary to the RNA subunit. The complex is eluted from the beads through competition with a displacement oligonucleotide. Thus, the purified RNP is eluted under mild conditions, retaining its catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lamond, A. I., Sproat, B., Ryder, U., and Hamm, J. (1989) Probing the structure and function of U2 snRNP with antisense oligonucleotides made of 2′-OMe RNA. Cell 58, 383–390.

    Article  CAS  PubMed  Google Scholar 

  2. Lamond, A. I., and Sproat, B. S. (1994) Isolation and characterisation of ribonucleopro-tein complexes. In: RNA Processing: A Practical Approach (Hames, B. D., and Higgins, S. J., eds.), IRL Press at Oxford University Press, Oxford, U.K., pp. 103–140.

    Google Scholar 

  3. Lingner, J., and Cech, T. R. (1996) Purification of telomerase from Euplotes aediculatus: requirement of a primer 3′ overhang. Proc. Natl. Acad. Sci. USA 93, 10712–10717.

    Article  CAS  PubMed  Google Scholar 

  4. Schnapp, G., Rodi, H. P., Rettig, W. J., Schnapp, A., and Damm, K. (1998) One-step affinity purification protocol for human telomerase. Nucleic Acids Res. 26, 3311–3313.

    Article  CAS  PubMed  Google Scholar 

  5. Wenz, C., Enenkel, B., Amacker, M., Kelleher, C., Damm, K., and Lingner, J. (2001) Human telomerase contains two cooperating telomerase RNA molecules. EMBO J. 20, 3526–3534.

    Article  CAS  PubMed  Google Scholar 

  6. Schreiber, E., Matthias, P., Muller, M. M., and Schaffner, W. (1989) Rapid detection of octamer binding proteins with “mini-extracts,” prepared from a small number of cells. Nucleic Acids Res. 17, 6419.

    Article  CAS  PubMed  Google Scholar 

  7. Kim, N. W., and Wu, F. (1997) Advances in quantification and characterization of telomerase activity by the telomeric repeat amplification protocol (TRAP). Nucleic Acids Res. 25, 2595–2597.

    Article  CAS  PubMed  Google Scholar 

  8. Wege, H., Chui, M. S., Le, H. T., Tran, J. M., and Zern, M. A. (2003) SYBR Green real-time telomeric repeat amplification protocol for the rapid quantification of telomerase activity. Nucleic Acids Res. 31, E3-3.

    PubMed  Google Scholar 

  9. Waris, G., Sarker, S., and Siddiqui, A. (2004) Two-step affinity purification of the hepatitis C virus ribonucleoprotein complex. RNA 10, 321–329.

    Article  CAS  PubMed  Google Scholar 

  10. Dignam, J. D., Lebovitz, R. M., and Roeder, R. G. (1983) Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11, 1475–1489.

    Article  CAS  PubMed  Google Scholar 

  11. Holt, S. E., Aisner, D. L., Baur, J., et al. (1999) Functional requirement of p23 and Hsp90 in telomerase complexes. Genes Dev. 13, 817–826.

    Article  CAS  PubMed  Google Scholar 

  12. Forsythe, H. L., Jarvis, J. L., Turner, J. W., Elmore, L. W., and Holt, S. E. (2001) Stable association of hsp90 and p23, but Not hsp70, with active human telomer-ase. J. Biol. Chem. 276, 15571–15574.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Christian Wenz for his contributions to the described protocols. This work was supported by an ISREC PhD fellowship to I.K., an EMBO Long-Term Postdoctoral Fellowship to G.C., and a Swiss National Science Foundation grant to J.L.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this protocol

Cite this protocol

Kurth, I., Cristofari, G., Lingner, J. (2008). An Affinity Oligonucleotide Displacement Strategy to Purify Ribonucleoprotein Complexes Applied to Human Telomerase. In: Lin, RJ. (eds) RNA-Protein Interaction Protocols. Methods in Molecular Biology, vol 488. Humana Press. https://doi.org/10.1007/978-1-60327-475-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-475-3_2

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-419-7

  • Online ISBN: 978-1-60327-475-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics