Skip to main content

Mapping the Regions of RNase P Catalytic RNA That Are Potentially in Close Contact With Its Protein Cofactor

  • Protocol
RNA-Protein Interaction Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 488))

Summary

Ribonuclease P (RNase P) from Escherichia coli is a transfer RNA (tRNA)-processing enzyme and consists of a catalytic RNA subunit (M1 RNA) and a protein component (C5 protein). M1GS, a gene-targeting ribozyme derived from M1 RNA, can cleave a target messenger RNA (mRNA) efficiently in vitro and inhibit its expression effectively in cultured cells. It has been shown that C5 protein can significantly increase the activities of M1 ribozyme and M1GS RNA in cleaving a natural tRNA substrate and a target mRNA, respectively. Understanding how C5 binds to M1GS RNA and affects the specific interactions between the ribozyme and its target mRNA substrates may facilitate the development of gene-targeting ribozymes that function effectively in vivo in the presence of cellular proteins. We describe the methods to determine the regions of a M1GS ribozyme that are potentially in close proximity to C5 protein. Specifically, methods are described in detail in using Fe(II)-ethylenediaminetetraacetic acid (EDTA) cleavage and nuclease footprint analyses to map the regions of the ribozyme in the absence and presence of C5 protein. These methods intend to provide experimental protocols for studying the regions of RNase P ribozyme that are in close contact with C5 protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altman, S., and Kirsebom, L. A. (1999) In: The RNA World (Gesteland, R. F., Cech T. R., and Atkins J. F., eds.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N Y, pp. 351–380.

    Google Scholar 

  2. Frank, D. N., and Pace, N. R. (1998) Ribonuclease P: unity and diversity in a tRNA processing ribozyme. Annu. Rev. Biochem., 67, 153–180.

    Article  CAS  PubMed  Google Scholar 

  3. Liu, F., and Altman, S. (1994) Differential evolution of substrates for an RNA enzyme in the presence and absence of its protein cofactor. Cell 77, 1093–1100.

    Article  CAS  PubMed  Google Scholar 

  4. Komine, Y. , Kitabatake, M., Yokogawa, T., Nishikawa, K., and Inokuchi, H. (1994) A tRNA-like structure is present in 10Sa RNA, a small stable RNA from Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 91, 9223–9227.

    Article  CAS  Google Scholar 

  5. Liu, F., and Altman, S. (1996) Requirements for cleavage by a modified RNase P of a small model substrate. Nucleic Acids Res. 24, 2690–2696.

    Article  CAS  PubMed  Google Scholar 

  6. Guerrier-Takada, C., van Belkum, A., Pleij, C. W., and Altman, S. (1988) Novel reactions of RNase P with a tRNA-like structure in turnip yellow mosaic virus RNA. Cell 53, 267–272.

    Article  CAS  PubMed  Google Scholar 

  7. Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N., and Altman, S. (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35, 849–857.

    Article  CAS  PubMed  Google Scholar 

  8. Forster, A. C., and Altm an, S. (1990) External guide sequences for an RNA enzyme. Science 249, 783–786.

    Article  CAS  PubMed  Google Scholar 

  9. Liu, F., and Altman, S. (1995) Inhibition of viral gene expression by the catalytic RNA subunit of RNase P from Escherichia coli. Genes Dev. 9, 471–480.

    CAS  Google Scholar 

  10. Yuan, Y., Hwang, E. S., and Altman, S. (1992) Targeted cleavage of mRNA by human RNase P. Proc. Natl. Acad. Sci. U. S. A. 89, 8006‣8010.

    Article  CAS  PubMed  Google Scholar 

  11. Plehn-Dujowich, D., and Altman, S. (1998) Effective inhibition of influenza virus production in cultured cells by external guide sequences and ribonuclease P. Proc. Natl. Acad. Sci. U. S. A. 95, 7327–7332.

    Article  CAS  PubMed  Google Scholar 

  12. Kawa, D., Wang, J., Yuan, Y. , and Liu, F. (1998) Inhibition of viral gene expression by human ribonuclease P. RNA 4, 1397–1406.

    Article  CAS  PubMed  Google Scholar 

  13. Dunn, W., Trang, P., Khan, U., Zhu, J., and Liu, F. (2001) RNase P-mediated inhibition of cytomegalovirus protease expression and viral DNA encapsidation by oligonucleotide external guide sequences. Proc. Natl. Acad. Sci. U. S. A. 98, 14831–14836.

    Article  CAS  PubMed  Google Scholar 

  14. Frank, D. N., Harris, M. E., and Pace, N. R. (1994) Rational design of self-cleaving pre-tRNA-ribonuclease P RNA conjugates. Biochemistry 33, 10800– 10808.

    Article  CAS  PubMed  Google Scholar 

  15. Haas, E. S., Brown, J. W., Pitulle, C., and Pace, N. R. (1994) Further perspective on the catalytic core and secondary structure of ribonuclease P RNA. Proc. Natl. Acad. Sci. U. S. A.91, 2527–2531.

    Article  CAS  PubMed  Google Scholar 

  16. Haas, E. S., Armbruster, D. W., Vucson, B. M., Daniels, C. J., and Brown, J. W. (1996) Comparative analysis of ribonuclease P RNA structure in Archaea. Nucleic Acids Res. 24, 1252–1259.

    Article  CAS  PubMed  Google Scholar 

  17. Haas, E. S., and Brown, J. W. (1998) Evolutionary variation in bacterial RNase P RNAs. Nucleic Acids Res. 26, 4093–4099.

    Article  CAS  PubMed  Google Scholar 

  18. Chen, J. L., Nolan, J. M., Harris, M. E., and Pace, N. R. (1998) Comparative pho-tocross-linking analysis of the tertiary structures of Escherichia coli and Bacillus subtilis RNase P RNAs. EMBO J. 17, 1515–1525.

    Article  CAS  PubMed  Google Scholar 

  19. Massire, C., Jaeger, L., and Westhof, E. (1998) Derivation of the three-dimensional architecture of bacterial ribonuclease P RNAs from comparative sequence analysis. J. Mol. Biol. 279, 773–793.

    Article  CAS  PubMed  Google Scholar 

  20. Krasilnikov, A. S., Yang, X., Pan, T., and Mondragon, A. (2003) Crystal structure of the specificity domain of ribonuclease P. Nature 421, 760–764.

    Article  CAS  PubMed  Google Scholar 

  21. Stams, T., Niranjanakumari, S., Fierke, C. A., and Christianson, D. W. (1998) Ribonuclease P protein structure: evolutionary origins in the translational apparatus. Science 280, 752–755.

    Article  CAS  PubMed  Google Scholar 

  22. Kazantsev, A. V. , Krivenko, A. A., Harrington, D. J., et al. (2003) High-resolution structure of RNase P protein from Thermotoga maritima. Proc. Natl. Acad. Sci. U. S. A. 100, 7497–7502.

    Article  CAS  Google Scholar 

  23. Tsai, H. Y., Masquida, B., Biswas, R., Westhof, E., and Gopalan, V. (2003) Molecular modeling of the three-dimensional structure of the bacterial RNase P holoenzyme. J. Mol. Biol. 325, 661–675.

    Article  CAS  PubMed  Google Scholar 

  24. Kim, J. J., Kilani, A. F., Zhan, X., Altman, S., and Liu, F. (1997) The protein cofactor allows the sequence of an RNase P ribozyme to diversify by maintaining the catalytically active structure of the enzyme. RNA 3, 613–623.

    CAS  PubMed  Google Scholar 

  25. Niranjanakumari, S., Stams, T., Crary, S. M., Christianson, D. W., and Fierke, C. wA. (1998) Protein component of the ribozyme ribonuclease P alters substrate recognition by directly contacting precursor tRNA.Proc. Natl. Acad. Sci. U. S. A. 95, 15212–15217.

    Article  CAS  PubMed  Google Scholar 

  26. Reich, C., Olsen, G. J., Pace, B., and Pace, N. R. (1988) Role of the protein moiety of ribonuclease P, a ribonucleoprotein enzyme. Science 239, 178–181.

    Article  CAS  PubMed  Google Scholar 

  27. Hsieh, J., Andrews, A. J., and Fierke, C. A. (2004) Roles of protein subunits in RNA-protein complexes: lessons from ribonuclease P. Biopolymers 73, 79–89.

    Article  CAS  PubMed  Google Scholar 

  28. Gopalan, V., Vioque, A., and Altman, S. (2002) RNase P: variations and uses. J. Biol. Chem. 277, 6759–6762.

    Article  CAS  PubMed  Google Scholar 

  29. Mann, H., Ben-Asouli, Y., Schein, A., Moussa, S., and Jarrous, N. (2003) Eukaryotic RNase P: role of RNA and protein subunits of a primordial catalytic ribonucleoprotein in RNA-based catalysis. Mol. Cell 12, 925–935.

    Article  CAS  PubMed  Google Scholar 

  30. Hsu, A. W., Kilani, A. F., Liou, K., Lee, J., and Liu, F. (2000) Differential effects of the protein cofactor on the interactions between an RNase P ribozyme and its target mRNA substrate. Nucleic Acids Res. 28, 3105–3116.

    Article  CAS  PubMed  Google Scholar 

  31. Trang, P., Lee, M., Nepomuceno, E., Kim, J., Zhu, H., and Liu, F. (2000) Effective inhibition of human cytomegalovirus gene expression and replication by a ribo-zyme derived from the catalytic RNA subunit of RNase P from Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 97, 5812–5817.

    Article  CAS  PubMed  Google Scholar 

  32. Celander, D. W., and Cech, T. R. (1991) Visualizing the higher order folding of a catalytic RNA molecule. Science 251, 401–407.

    Article  CAS  PubMed  Google Scholar 

  33. Westhof, E., Wesolowski, D., and Altman, S. (1996) Mapping in three dimensions of regions in a catalytic RNA protected from attack by an Fe(II)-EDTA reagent. J. Mol. Biol. 258, 600–613.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Venkat Gopalan of Ohio State University for providing the purified C5 protein and Kihoon Kim for helpful discussions. P.T. was a recipient of the American Heart Association Predoctoral Fellowship (Western States Affiliate). F.L. was a Scholar of the Lymphoma and Leukemia Society of America and an Established Investigator of the American Heart Association. The research has been supported by the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this protocol

Cite this protocol

Trang, P., Liu, F. (2008). Mapping the Regions of RNase P Catalytic RNA That Are Potentially in Close Contact With Its Protein Cofactor. In: Lin, RJ. (eds) RNA-Protein Interaction Protocols. Methods in Molecular Biology, vol 488. Humana Press. https://doi.org/10.1007/978-1-60327-475-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-475-3_19

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-419-7

  • Online ISBN: 978-1-60327-475-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics