Advertisement

The Chloroplast Protein Import Machinery: A Review

  • Penelope Strittmatter
  • Jürgen Soll
  • Bettina Bölter
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 619)

Abstract

Plastids are a heterogeneous family of organelles found ubiquitously in plants and algal cells. Most prominent are the chloroplasts, which carry out such essential processes as photosynthesis and the biosynthesis of fatty acids as well as of amino acids. As mitochondria, chloroplasts are derived from a single endosymbiotic event. They are believed to have evolved from an ancient cyanobacterium, which was engulfed by an early eukaryotic ancestor. During evolution the plastid genome has been greatly reduced and most of the genes have been transferred to the host nucleus. Consequently, more than 98% of all plastid proteins are translated on cytosolic ribosomes. They have to be posttranslationally targeted to and imported into the organelle. Targeting is assisted by cytosolic proteins which interact with proteins destined for plastids and thereby keep them in an import competent state. After reaching the target organelle, many proteins have to conquer the barrier of the chloroplast outer and inner envelope. This process is mediated by complex molecular machines in the outer (Toc complex) and inner (Tic complex) envelope of chloroplasts, respectively. Most proteins destined for the compartments inside the chloroplast contain a cleavable N-terminal transit peptide, whereas most of the outer envelope components insert into the membrane without such a targeting peptide.

Key words

Chloroplasts protein targeting in vivo import translocation machinery Toc/Tic sorting 

References

  1. 1.
    Bölter, B., Soll, J., Hill, K., Hemmler, R., and Wagner, R. (1999) A rectifying ATP-regulated solute channel in the chloroplastic outer envelope from pea. EMBO J 18, 5505–5516.CrossRefPubMedGoogle Scholar
  2. 2.
    Li, H. M. and Chen, L. J. (1996) Protein targeting and integration signal for the chloroplastic outer envelope membrane. Plant Cell 8, 2117–2126.CrossRefPubMedGoogle Scholar
  3. 3.
    Pohlmeyer, K., Soll, J., Steinkamp, T., Hinnah, S., and Wagner, R. (1997) Isolation and characterization of an amino acid-selective channel protein present in the chloroplastic outer envelope membrane. PNAS 94, 9504–9509.CrossRefPubMedGoogle Scholar
  4. 4.
    Pohlmeyer, K., Soll, J., Grimm, R., Hill, K., and Wagner, R. (1998) A high-conductance solute channel in the chloroplastic outer envelope from Pea. Plant Cell 10, 1207–1216.CrossRefPubMedGoogle Scholar
  5. 5.
    Salomon, M., Fischer, K., Flugge, U. I., and Soll, J. (1990) Sequence analysis and protein import studies of an outer chloroplast envelope polypeptide. PNAS 87, 5778–5782.CrossRefPubMedGoogle Scholar
  6. 6.
    Seedorf, M., Waegemann, K., and Soll, J. (1995) A constituent of the chloroplast import complex represents a new type of GTP-binding protein. Plant J 7, 401–411.CrossRefPubMedGoogle Scholar
  7. 7.
    von Heijne, G., Steppuhn, J., and Herrmann, R. G. (1989) Domain structure of mitochondrial and chloroplast targeting peptides. Eur J Biochem 180, 535–545.CrossRefGoogle Scholar
  8. 8.
    Cline, K. (2000) Gateway to the chloroplast. Nature 403, 148–149.CrossRefPubMedGoogle Scholar
  9. 9.
    Waegemann, K. and Soll, J. (1996) Phosphorylation of the transit sequence of chloroplast precursor proteins. J Biol Chem 271, 6545–6554.CrossRefPubMedGoogle Scholar
  10. 10.
    Fulgosi, H., Soll, J., de Faria, M. S., Korthout, H. A., Wang, M., and Testerink, C. (2002) 14-3-3 proteins and plant development. Plant Mol Biol 50, 1019–1029.CrossRefPubMedGoogle Scholar
  11. 11.
    Oreb, M., Hofle, A., Mirus, O., and Schleiff, E. (2008) Phosphorylation regulates the assembly of chloroplast import machinery. J Exp Bot 59, 2309–2316.CrossRefPubMedGoogle Scholar
  12. 12.
    vonHeijne, G. (1989) Control of topology and mode of assembly of a polytopic membrane protein by positively charged residues. Nature 341, 456–458.CrossRefGoogle Scholar
  13. 13.
    Pfanner, N., Craig, E. A., and Honlinger, A. (1997) Mitochondrial preprotein translocase. Annu Rev Cell Dev Biol 13, 25–51.CrossRefPubMedGoogle Scholar
  14. 14.
    Waegemann, K., Paulsen, H., and Soll, J. (1990) Translocation of proteins into chloroplasts requires cytosolic factors to obtain import competence. FEBS Lett 261, 89–92.CrossRefGoogle Scholar
  15. 15.
    Pilon, M., de Boer, A. D., Knols, S. L., Koppelman, M. H., van der Graaf, R. M., de Kruijff, B., and Weisbeek, P. J. (1990) Expression in Escherichia coli and purification of a translocation-competent precursor of the chloroplast protein ferredoxin. J Biol Chem 265, 3358–3361.PubMedGoogle Scholar
  16. 16.
    Pilon, M., Rietveld, A. G., Weisbeek, P. J., and de Kruijff, B. (1992) Secondary structure and folding of a functional chloroplast precursor protein. J Biol Chem 267, 19907–19913.PubMedGoogle Scholar
  17. 17.
    May, T. and Soll, J. (2000) 14-3-3 proteins form a guidance complex with chloroplast precursor proteins in plants. Plant Cell 12, 53–64.CrossRefPubMedGoogle Scholar
  18. 18.
    Rial, D. V., Ottado, J., and Ceccarelli, E. A. (2003) Precursors with altered affinity for Hsp70 in their transit peptides are efficiently imported into chloroplasts. J Biol Chem 278, 46473–46481.CrossRefPubMedGoogle Scholar
  19. 19.
    Schleiff, E., Soll, J., Sveshnikova, N., Tien, R., Wright, S., Dabney-Smith, C., Subramanian, C., and Bruce, B. D. (2002) Structural and guanosine triphosphate/diphosphate requirements for transit peptide recognition by the cytosolic domain of the chloroplast outer envelope receptor, Toc34. Biochemistry 41, 1934–1946.CrossRefPubMedGoogle Scholar
  20. 20.
    Schleiff, E., Jelic, M., and Soll, J. (2003) A GTP-driven motor moves proteins across the outer envelope of chloroplasts. Proc Natl Acad Sci U S A 100, 4604–4609.CrossRefPubMedGoogle Scholar
  21. 21.
    Sohrt, K. and Soll, J. (2000) Toc64, a new component of the protein translocon of chloroplasts. J Cell Biol 148, 1213–1221.CrossRefPubMedGoogle Scholar
  22. 22.
    Lamb, J. R., Tugendreich, S., and Hieter, P. (1995) Tetratrico peptide repeat interactions: to TPR or not to TPR? Trends Biochem Sci 20, 257–259.CrossRefPubMedGoogle Scholar
  23. 23.
    Frydman, J. and Hohfeld, J. (1997) Chaperones get in touch: the Hip-Hop connection. Trends Biochem Sci 22, 87–92.CrossRefPubMedGoogle Scholar
  24. 24.
    Qbadou, S., Becker, T., Mirus, O., Tews, I., Soll, J., and Schleiff, E. (2006) The molecular chaperone Hsp90 delivers precursor proteins to the chloroplast import receptor Toc64. EMBO J 25, 1836–1847.CrossRefPubMedGoogle Scholar
  25. 25.
    Schleiff, E., Soll, J., Kuchler, M., Kuhlbrandt, W., and Harrer, R. (2003) Characterization of the translocon of the outer envelope of chloroplasts. J Cell Biol 160, 541–551.CrossRefPubMedGoogle Scholar
  26. 26.
    Hinnah, S. C., Wagner, R., Sveshnikova, N., Harrer, R., and Soll, J. (2002) The chloroplast protein import channel Toc75: pore properties and interaction with transit peptides. Biophys J 83, 899–911.CrossRefPubMedGoogle Scholar
  27. 27.
    Tranel, P. J., Froehlich, J., Goyal, A., and Keegstra, K. (1995) A component of the chloroplastic protein import apparatus is targeted to the outer envelope membrane via a novel pathway. EMBO J 14, 2436–2446.PubMedGoogle Scholar
  28. 28.
    Waegemann, K. and Soll, J. (1996) Phosphorylation of the transit sequence of chloroplast precursor proteins. J Biol Chem 271, 6545–6554.CrossRefPubMedGoogle Scholar
  29. 29.
    Eckart, K., Eichacker, L., Sohrt, K., Schleiff, E., Heins, L., and Soll, J. (2002) A Toc75-like protein import channel is abundant in chloroplasts. EMBO Rep 3, 557–562.CrossRefPubMedGoogle Scholar
  30. 30.
    Jackson-Constan, D. and Keegstra, K. (2001) Arabidopsis genes encoding components of the chloroplastic protein import apparatus. Plant Physiol 125, 1567–1576.CrossRefPubMedGoogle Scholar
  31. 31.
    Baldwin, A., Wardle, A., Patel, R., Dudley, P., Park, S. K., Twell, D., Inoue, K., and Jarvis, P. (2005) A molecular-genetic study of the Arabidopsis Toc75 gene family. Plant Physiol 138, 715–733.CrossRefPubMedGoogle Scholar
  32. 32.
    Constan, D., Patel, R., Keegstra, K., and Jarvis, P. (2004) An outer envelope membrane component of the plastid protein import apparatus plays an essential role in Arabidopsis. Plant J 38, 93–106.CrossRefPubMedGoogle Scholar
  33. 33.
    Hust, B. and Gutensohn, M. (2006) Deletion of core components of the plastid protein import machinery causes differential arrest of embryo development in Arabidopsis thaliana. Plant Biol 18–30.Google Scholar
  34. 34.
    Schleiff, E. and Soll, J. (2005) Membrane protein insertion: mixing eukaryotic and prokaryotic concepts. EMBO Rep 6, 1023–1027.CrossRefPubMedGoogle Scholar
  35. 35.
    Reumann, S. and Keegstra, K. (1999) The endosymbiotic origin of the protein import machinery of chloroplastic envelope membranes. Trends Plant Sci 4, 302–307.CrossRefPubMedGoogle Scholar
  36. 36.
    Patel, R., Hsu, S. C., Bedard, J., Inoue, K., and Jarvis, P. (2008) The omp85-related chloroplast outer envelope protein OEP80 is essential for viability in Arabidopsis. Plant Physiol 148, 235–245.CrossRefPubMedGoogle Scholar
  37. 37.
    Hiltbrunner, A., Bauer, J., Alvarez-Huerta, M., and Kessler, F. (2001) Protein translocon at the Arabidopsis outer chloroplast membrane. Biochem Cell Biol 79, 629–635.CrossRefPubMedGoogle Scholar
  38. 38.
    Kubis, S., Patel, R., Combe, J., Bedard, J., Kovacheva, S., Lilley, K., Biehl, A., Leister, D., Rios, G., Koncz, C., and Jarvis, P. (2004) Functional specialization amongst the Arabidopsis Toc159 family of chloroplast protein import receptors. The Plant Cell 16, 2059–2077.CrossRefPubMedGoogle Scholar
  39. 39.
    Kessler, F., Blobel, G., Patel, H. A., and Schnell, D. J. (1994) Identification of two GTP-binding proteins in the chloroplast protein import machinery. Science 266, 1035–1039.CrossRefPubMedGoogle Scholar
  40. 40.
    Sveshnikova, N., Soll, J., and Schleiff, E. (2000) Toc34 is a preprotein receptor regulated by GTP and phosphorylation. PNAS 97, 4973–4978.CrossRefPubMedGoogle Scholar
  41. 41.
    Hirsch, S., Muckel, E., Heemeyer, F., von Heijne, G., and Soll, J. (1994) A receptor component of the chloroplast protein translocation machinery. Science 266, 1989–1992.CrossRefPubMedGoogle Scholar
  42. 42.
    Sun, Y. J., Forouhar, F., Li Hm, H. M., Tu, S. L., Yeh, Y. H., Kao, S., Shr, H. L., Chou, C. C., Chen, C., and Hsiao, C. D. (2002) Crystal structure of pea Toc34, a novel GTPase of the chloroplast protein translocon. Nat Struct Biol 9, 95–100.CrossRefPubMedGoogle Scholar
  43. 43.
    Jelic, M., Sveshnikova, N., Motzkus, M., Hörth, P., Soll, J., and Schleiff, E. (2002) The chloroplast import receptor Toc34 functions as preprotein regulated GTPase. J Biol Chem 12, 1875–1883Google Scholar
  44. 44.
    Jarvis, P., Chen, L. J., Li, H., Peto, C. A., Fankhauser, C., and Chory, J. (1998) An Arabidopsis mutant defective in the plastid general protein import apparatus. Science 282, 100–103.CrossRefPubMedGoogle Scholar
  45. 45.
    Gutensohn, M., Schulz, B., Nicolay, P., and Flugge, U. I. (2000) Functional analysis of the two Arabidopsis homologues of Toc34, a component of the chloroplast protein import apparatus. Plant J 23, 771–783.CrossRefPubMedGoogle Scholar
  46. 46.
    Dahlin, C. and Cline, K. (1991) Developmental regulation of the plastid protein import apparatus. Plant Cell 3, 1131–1140.CrossRefPubMedGoogle Scholar
  47. 47.
    Becker, T., Hritz, J., Vogel, M., Caliebe, A., Bukau, B., Soll, J., and Schleiff, E. (2004) Toc12, a novel subunit of the intermembrane space preprotein translocon of chloroplasts. Mol Biol Cell 15, 5130–5144.CrossRefPubMedGoogle Scholar
  48. 48.
    Jackson-Constan, D. and Keegstra, K. (2001) Arabidopsis genes encoding components of the chloroplastic protein import apparatus. Plant Physiol 125, 1567–1576.CrossRefPubMedGoogle Scholar
  49. 49.
    Aronsson, H., Boij, P., Patel, R., Wardle, A., Töpel, M., and Jarvis, P. (2007) Toc64/OEP64 is not essential for the efficient import of proteins into chloroplasts in Arabidopsis thaliana. Plant J 52, 53–68.CrossRefPubMedGoogle Scholar
  50. 50.
    Chew, O. and Whelan, J. (2004) Just read the message: a model for sorting of proteins between mitochondria and chloroplasts. Trends Plant Sci 9, 318–319.CrossRefPubMedGoogle Scholar
  51. 51.
    Qbadou, S., Becker, T., Bionda, T., Reger, K., Ruprecht, M., Soll, J., and Schleiff, E. (2007) Toc64 - A Preprotein-receptor at the outer membrane with bipartide function. J Mol Biol 367, 1330–1346.CrossRefPubMedGoogle Scholar
  52. 52.
    Akita, M., Nielsen, E., and Keegstra, K. (1997) Identification of protein transport complexes in the chloroplastic envelope membranes via chemical cross-linking. J Cell Biol 136, 983–994.CrossRefPubMedGoogle Scholar
  53. 53.
    Nielsen, E., Akita, M., Davila-Aponte, J., and Keegstra, K. (1997) Stable association of chloroplastic precursors with protein translocation complexes that contain proteins from both envelope membranes and a stromal Hsp100 molecular chaperone. EMBO J 16, 935–946.CrossRefPubMedGoogle Scholar
  54. 54.
    Teng, Y. S., Su, Y. s., Chen, L. J., Lee, Y. J., Hwang, I., and Li, H. M. (2006) Tic21 is an essential translocon component for protein translocation across the chloroplast inner envelope membrane. Plant Cell 18, 2247–2257.CrossRefPubMedGoogle Scholar
  55. 55.
    Duy, D., Wanner, G., Meda, A. R., von Wiren, N., Soll, J., and Philippar, K. (2007) PIC1, an ancient permease in Arabidopsis chloroplasts, mediates iron transport. Plant Cell 19, 986–1006.CrossRefPubMedGoogle Scholar
  56. 56.
    Lübeck, J., Soll, J., Akita, M., Nielsen, E., and Keegstra, K. (1996) Topology of IEP110, a component of the chloroplastic protein import machinery present in the inner envelope membrane. EMBO J 15, 4230–4238.PubMedGoogle Scholar
  57. 57.
    Kessler, F. and Blobel, G. (1996) Interaction of the protein import and folding machineries of the chloroplast. PNAS 93, 7684–7689.CrossRefPubMedGoogle Scholar
  58. 58.
    Heins, L., Mehrle, A., Hemmler, R., Wagner, R., Küchler, M., Hörmann, F., Sveshnikov, D., and Soll, J. (2002) The preprotein conducting channel at the inner envelope membrane of plastids. EMBO J 21, 2616–2625.CrossRefPubMedGoogle Scholar
  59. 59.
    Inaba, T., Alvarez-Huerta, M., Li, M., Bauer, J., Ewers, C., Kessler, F., and Schnell, D. J. (2005) Arabidopsis tic110 is essential for the assembly and function of the protein import machinery of plastids. Plant Cell 17, 1482–1496.CrossRefPubMedGoogle Scholar
  60. 60.
    Ko, K., Budd, D., Wu, C., Seibert, F., Kourtz, L., and Ko, Z. W. (1995) Isolation and characterization of a cDNA clone encoding a member of the Com44/Cim44 envelope components of the chloroplast protein import apparatus. J Biol Chem 270, 28601–28608.CrossRefPubMedGoogle Scholar
  61. 61.
    Stahl, T., Glockmann, C., Soll, J., and Heins, L. (1999) Tic40, a new "old" subunit of the chloroplast protein import translocon. J Biol Chem 274, 37467–37472.CrossRefPubMedGoogle Scholar
  62. 62.
    Chou, M. L., Fitzpatrick, L. M., Tu, S. L., Budziszewski, G., Potter-Lewis, S., Akita, M., Levin, J. Z., Keegstra, K., and Li, H. M. (2003) Tic40, a membrane-anchored co-chaperone homolog in the chloroplast protein translocon. EMBO J 22, 2970–2980.CrossRefPubMedGoogle Scholar
  63. 63.
    Inaba, T., Li, M., Alvarez-Huerta, M., Kessler, F., and Schnell, D. J. (2003) AtTic110 functions as a scaffold for coordinating the stromal events of protein import into chloroplasts. J Biol Chem 278, 38617–38627.CrossRefPubMedGoogle Scholar
  64. 64.
    Kovacheva, S., Bedard, J., Patel, R., Dudley, P., Twell, D., Rios, G., Koncz, C., and Jarvis, P. (2005) In vivo studies on the roles of Tic110, Tic40 and Hsp93 during chloroplast protein import. Plant J 41, 412–428.CrossRefPubMedGoogle Scholar
  65. 65.
    Bedard, J., Kubis, S., Bimanadham, S., and Jarvis, P. (2007) Functional similarity between the chloroplast translocon component, Tic40, and the human co-chaperone, Hsp70-interacting protein (Hip). J Bio Chem 282, 21404–21414.CrossRefGoogle Scholar
  66. 66.
    Chiu, C. C. and Li, H. M. (2008) Tic40 is important for reinsertion of proteins from the chloroplast stroma into the inner membrane. Plant J Epub ahead of print.Google Scholar
  67. 67.
    Chou, M. L., Chu, C. C., Chen, L. J., Akita, M., and Li, H. M. (2006) Stimulation of transit-peptide release and ATP hydrolysis by a cochaperone during protein import into chloroplasts. J Cell Biol 175, 893–900.CrossRefPubMedGoogle Scholar
  68. 68.
    Stengel, A., Benz, J. P., Balsera, M., and Soll, J. A. B. B. (2008) Tic62 – Redox regulated translocon composition and dynamics. J Biol Chem 283, 6656–6667.CrossRefPubMedGoogle Scholar
  69. 69.
    Hormann, F., Kuchler, M., Sveshnikov, D., Oppermann, U., Li, Y., and Soll, J. (2004) Tic32, an essential component in chloroplast biogenesis. J Biol Chem 279, 34756–34762.CrossRefPubMedGoogle Scholar
  70. 70.
    Chigri, F., Soll, J., and Vothknecht, U. C. (2005) Calcium regulation of chloroplast protein import. Plant J 42, 821–831.CrossRefPubMedGoogle Scholar
  71. 71.
    Chigri, F., Hormann, F., Stamp, A., Stammers, D. K., Bolter, B., Soll, J., and Vothknecht, U. C. (2006) Calcium regulation of chloroplast protein translocation is mediated by calmodulin binding to Tic32. Proc Natl Acad Sci U S A 103, 16051–16056.CrossRefPubMedGoogle Scholar
  72. 72.
    Caliebe, A., Grimm, R., Kaiser, G., Lubeck, J., Soll, J., and Heins, L. (1997) The chloroplastic protein import machinery contains a Rieske-type iron-sulfur cluster and a mononuclear iron-binding protein. EMBO J 16, 7342–7350.CrossRefPubMedGoogle Scholar
  73. 73.
    Kuchler, M., Decker, S., Hormann, F., Soll, J., and Heins, L. (2002) Protein import into chloroplasts involves redox-regulated proteins. EMBO J 21, 6136–6145.CrossRefPubMedGoogle Scholar
  74. 74.
    Ding, H., Hidalgo, E., and Demple, B. (1996) The redox state of the [2Fe-2S] clusters in SoxR protein regulates its activity as a transcription factor. J Biol Chem 271, 33173–33175.CrossRefPubMedGoogle Scholar
  75. 75.
    Hidalgo, E., Ding, H., and Demple, B. (1997) Redox signal transduction via iron-sulfur clusters in the SoxR transcription activator. Trends Biochem Sci 22, 207–210.CrossRefPubMedGoogle Scholar
  76. 76.
    Bartsch, S., Monnet, J., Selbach, K., Quigley, F., Gray, J., von Wettstein, D., Reinbothe, S., and Reinbothe, C. (2008) Three thioredoxin targets in the inner envelope membrane of chloroplasts function in protein import and chlorophyll metabolism. Proc Nat Acad Sci 105, 4933–4938.CrossRefPubMedGoogle Scholar
  77. 77.
    Balsera, M., Stengel, A., Soll, J., and Bolter, B. (2007) Tic62: a protein family from metabolism to protein translocation. BMC Evol Biol 7, 43.CrossRefPubMedGoogle Scholar
  78. 78.
    Kouranov, A., Chen, X., Fuks, B., and Schnell, D. J. (1998) Tic20 and Tic22 are new components of the protein import apparatus at the chloroplast inner envelope membrane. J Cell Biol 143, 991–1002.CrossRefPubMedGoogle Scholar
  79. 79.
    Chen, X., Smith, M. D., Fitzpatrick, L., and Schnell, D. J. (2002) In vivo analysis of the role of atTic20 in protein import into chloroplasts. Plant Cell 14, 641–654.CrossRefPubMedGoogle Scholar
  80. 80.
    Rassow, J., Dekker, P. J., van Wilpe, S., Meijer, M., and Soll, J. (1999) The preprotein translocase of the mitochondrial inner membrane: function and evolution. J Mol Biol 286, 105–120.CrossRefPubMedGoogle Scholar
  81. 81.
    Koehler, C. M. (2000) Protein translocation pathways of the mitochondrion. FEBS Lett 476, 27–31.CrossRefPubMedGoogle Scholar
  82. 82.
    Li, M. and Schnell, D. J. (2006) Reconstitution of protein targeting to the inner envelope membrane of chloroplasts. J Cell Biol 175, 249–259.CrossRefPubMedGoogle Scholar
  83. 83.
    Lubeck, J., Heins, L., and Soll, J. (1997) A nuclear-coded chloroplastic inner envelope membrane protein uses a soluble sorting intermediate upon import into the organelle. J Cell Biol 137, 1279–1286.CrossRefPubMedGoogle Scholar
  84. 84.
    Tripp, J., Inoue, K., Keegstra, K., and Froehlich, J. E. (2007) A novel serine/proline-rich domain in combination with a transmembrane domain is required for the insertion of AtTic40 into the inner envelope membrane of chloroplasts. Plant J 52 (5), 824–838.Google Scholar
  85. 85.
    Vojta, L., Soll, J., and Bolter, B. (2007) Requirements for a conservative protein translocation pathway in chloroplasts. FEBS Lett 581, 2621–2624.CrossRefPubMedGoogle Scholar
  86. 86.
    Flügge, U., Fischer, K., Gross, A., Sebald, W., Lottspeich, F., and Eckerskorn, C. (1989) The triose phosphate-3-phosphoglycerate-phosphate translocator from spinach chloroplasts: nucleotide sequence of a full-length cDNA clone and import of the in vitro synthesized precursor protein into chloroplasts. EMBO J 8, 39–46.PubMedGoogle Scholar
  87. 87.
    Firlej-Kwoka, E., Strittmatter, P., Soll, J., and Bölter, B. (2008) Import of preproteins into the chloroplast inner envelope membrane. Plant Mol Biol 68, 505–519.CrossRefPubMedGoogle Scholar
  88. 88.
    Miras, S., Salvi, D., Ferro, M., Grunwald, D., Garin, J., Joyard, J., and Rolland, N. (2002) Non-canonical transit peptide for import into the chloroplast. J Biol Chem 277, 47770–47778.CrossRefPubMedGoogle Scholar
  89. 89.
    Nada, A. and Soll, J. (2004) Inner envelope protein 32 is imported into chloroplasts by a novel pathway. J Cell Sci 117, 3975–3982.CrossRefPubMedGoogle Scholar
  90. 90.
    Keegstra, K. and Cline, K. (1999) Protein import and routing systems of chloroplasts. Plant Cell 11, 557–570.CrossRefPubMedGoogle Scholar
  91. 91.
    Nielsen, E., Akita, M., Davila-Aponte, J., and Keegstra, K. (1997) Stable association of chloroplastic precursors with protein translocation complexes that contain proteins from both envelope membranes and a stromal Hsp100 molecular chaperone. EMBO J 16, 935–946.CrossRefPubMedGoogle Scholar
  92. 92.
    Tsugeki, R. and Nishimura, M. (1993) Interaction of homologues of Hsp70 and Cpn60 with ferredoxin-NADP+ reductase upon its import into chloroplasts. FEBS Lett 320, 198–202.CrossRefPubMedGoogle Scholar
  93. 93.
    Richter, S. and Lamppa, G. K. (1998) A chloroplast processing enzyme functions as the general stromal processing peptidase. PNAS 95, 7463–7468.CrossRefPubMedGoogle Scholar
  94. 94.
    Di Cola, A., Klostermann, E., Robinson, C. (2005) The complexity of pathways for proteins import into thylakoids: it’s not easy being green. Biochem Soc Trans 33, 1024–1027CrossRefPubMedGoogle Scholar
  95. 95.
    Gutensohn, M., Fan, E., Frielingsdorf, S., Hanner, P., Hou, B., Hust, B., and Klosgen, R. B. (2006) Toc, Tic, Tat et al.: structure and function of protein transport machineries in chloroplasts. J Plant Physiol 163, 333–347.CrossRefPubMedGoogle Scholar
  96. 96.
    Robinson, C., Thompson, S. J., and Woolhead, C. (2001) Multiple pathways used for the targeting of thylakoid proteins in chloroplasts. Traffic 2, 245–251.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Penelope Strittmatter
    • 1
  • Jürgen Soll
    • 1
  • Bettina Bölter
    • 1
  1. 1.Department Biologie I-BotanikLudwig-Maximilians-Universität, Planegg-Martinsried and Munich Center for Integrated Protein Science, CiPSM, Ludwig-Maximilians- UniversitätMunichGermany

Personalised recommendations