Skip to main content

Assays of the Helicase, ATPase, and Exoribonuclease Activities of the Yeast Mitochondrial Degradosome

  • Protocol
  • First Online:
Helicases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 587))

Abstract

The mitochondrial degradosome (mtEXO) is the main enzymatic complex in RNA degradation, processing, and surveillance in Saccharomyces cerevisiae mitochondria. It consists of two nuclear-encoded subunits: the ATP-dependent RNA helicase Suv3p and the 3′ to 5′ exoribonuclease Dss1p. The two subunits depend on each other for their activity; the complex can therefore be considered as a model system for the cooperation of RNA helicases and exoribonucleases in RNA degradation. All the three activities of the complex (helicase, ATPase, and exoribonuclease) can be studied in vitro using recombinant proteins and protocols presented in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gagliardi D., Stepien P. P., Temperley R. J., Lightowlers R. N., and Chrzanowska-Lightowlers Z. M. (2004) Messenger RNA stability in mitochondria: different means to an end. Trends Genet. 20, 260–267.

    Article  PubMed  CAS  Google Scholar 

  2. Meyer S., Temme C., and Wahle E. (2004) Messenger RNA turnover in eukaryotes: pathways and enzymes. Crit. Rev. Biochem. Mol. Biol. 39, 197–216.

    Article  PubMed  CAS  Google Scholar 

  3. Mitchell P. and Tollervey D. (2000) mRNA stability in eukaryotes. Curr. Opin. Genet. Dev. 10, 193–198.

    Article  PubMed  CAS  Google Scholar 

  4. Mitchell P. and Tollervey D. (2001) mRNA turnover. Curr. Opin. Cell Biol. 13, 320–325.

    Article  PubMed  CAS  Google Scholar 

  5. Newbury S. F. (2006) Control of mRNA stability in eukaryotes. Biochem. Soc. Trans. 34, 30–34.

    Article  PubMed  CAS  Google Scholar 

  6. Rogowska A. T., Puchta O., Czarnecka A. M., Kaniak A., Stepien P. P., and Golik P. (2006) Balance between transcription and RNA degradation is vital for Saccharomyces cerevisiae mitochondria: reduced transcription rescues the phenotype of deficient RNA degradation. Mol. Biol. Cell 17, 1184–1193.

    Article  PubMed  CAS  Google Scholar 

  7. Carpousis A. J. (2002) The Escherichia coli RNA degradosome: structure, function and relationship in other ribonucleolytic multienzyme complexes. Biochem. Soc. Trans. 30, 150–155.

    Article  PubMed  CAS  Google Scholar 

  8. Mitchell P., Petfalski E., Shevchenko A., Mann M., and Tollervey D. (1997) The exosome: a conserved eukaryotic RNA processing complex containing multiple 3′→5′ exoribonucleases. Cell 91, 457–466.

    Article  PubMed  CAS  Google Scholar 

  9. Zuo Y. and Deutscher M. P. (2001) Exoribonuclease superfamilies: structural analysis and phylogenetic distribution. Nucleic Acids Res. 29, 1017–1026.

    Article  PubMed  CAS  Google Scholar 

  10. Cordin O., Banroques J., Tanner N. K., and Linder P. (2006) The DEAD-box protein family of RNA helicases. Gene 367, 17–37.

    Article  PubMed  CAS  Google Scholar 

  11. Rocak S. and Linder P. (2004) DEAD-box proteins: the driving forces behind RNA metabolism. Nat. Rev. Mol. Cell Biol. 5, 232–241.

    Article  PubMed  CAS  Google Scholar 

  12. Dziembowski A., Piwowarski J., Hoser R., Minczuk M., Dmochowska A., Siep M., van der Spek H., Grivell L., and Stepien P. P. (2003) The yeast mitochondrial degradosome. Its composition, interplay between RNA helicase and RNase activities and the role in mitochondrial RNA metabolism. J. Biol. Chem. 278, 1603–1611.

    Article  PubMed  CAS  Google Scholar 

  13. Malecki M., Jedrzejczak R., Stepien P. P., and Golik P. (2007) In vitro reconstitution and characterization of the yeast mitochondrial degradosome complex unravels tight functional interdependence. J. Mol. Biol. 372, 23–36.

    Article  PubMed  CAS  Google Scholar 

  14. Margossian S. P., Li H., Zassenhaus H. P., and Butow R. A. (1996) The DExH box protein Suv3p is a component of a yeast mitochondrial 3′-to-5′ exoribonuclease that suppresses group I intron toxicity. Cell 84, 199–209.

    Article  PubMed  CAS  Google Scholar 

  15. Dmochowska A., Golik P., and Stepien P. P. (1995) The novel nuclear gene DSS-1 of Saccharomyces cerevisiae is necessary for mitochondrial biogenesis. Curr. Genet. 28, 108–112.

    Article  PubMed  CAS  Google Scholar 

  16. Dziembowski A., Malewicz M., Minczuk M., Golik P., Dmochowska A., and Stepien P. P. (1998) The yeast nuclear gene DSS1, which codes for a putative RNase II, is necessary for the function of the mitochondrial degradosome in processing and turnover of RNA. Mol. Gen. Genet. 260, 108–114.

    Article  PubMed  CAS  Google Scholar 

  17. Golik P., Szczepanek T., Bartnik E., Stepien P. P., and Lazowska J. (1995) The S. cerevisiae nuclear gene SUV3 encoding a putative RNA helicase is necessary for the stability of mitochondrial transcripts containing multiple introns. Curr. Genet. 28, 217–224.

    Article  PubMed  CAS  Google Scholar 

  18. Stepien P. P., Margossian S. P., Landsman D., and Butow R. A. (1992) The yeast nuclear gene suv3 affecting mitochondrial post-transcriptional processes encodes a putative ATP-dependent RNA helicase. Proc. Natl. Acad. Sci. U.S.A. 89, 6813–6817.

    Article  PubMed  CAS  Google Scholar 

  19. Malecki M., Jedrzejczak R., Puchta O., Stepien P. P., and Golik P. (2008) In vivo and in vitro approaches for studying the yeast mitochondrial RNA degradosome complex. Methods Enzymol. 447, 463–488.

    Article  Google Scholar 

  20. Wong I. and Lohman T. M. (1993) A double-filter method for nitrocellulose-filter binding: application to protein-nucleic acid interactions. Proc. Natl. Acad. Sci. U.S.A. 90, 5428–5432.

    Article  PubMed  CAS  Google Scholar 

  21. Tanaka N. and Schwer B. (2005) Characterization of the NTPase, RNA-binding, and RNA helicase activities of the DEAH-box splicing factor Prp22. Biochemistry 44, 9795–9803.

    Article  PubMed  CAS  Google Scholar 

  22. Vincent H. A. and Deutscher M. P. (2006) Substrate recognition and catalysis by the exoribonuclease RNase R. J. Biol. Chem. 281, 29769–29775.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Science and Higher Education of Poland through The Faculty of Biology, Warsaw University Intramural Grants BW#1720/46 and BW#1680/40, the CoE BioExploratorium project: WKP_1/1.4.3/1/2004/44/44/115/2005, and by grants 2P04A 002 29 and N N301 2386 33 from the Ministry of Science and Higher Education of Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawel Golik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Malecki, M., Stepien, P.P., Golik, P. (2009). Assays of the Helicase, ATPase, and Exoribonuclease Activities of the Yeast Mitochondrial Degradosome. In: Abdelhaleem, M. (eds) Helicases. Methods in Molecular Biology, vol 587. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-355-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-355-8_24

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-354-1

  • Online ISBN: 978-1-60327-355-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics