Skip to main content

Helicases: An Overview

  • Protocol
  • First Online:
Helicases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 587))

Abstract

Helicases are essential enzymes involved in all aspects of nucleic acid metabolism including DNA replication, repair, recombination, transcription, ribosome biogenesis and RNA processing, translation, and decay. They occur in vivo as part of molecular complexes that include the components required for each specific step of nucleic acid metabolism. The role of the helicases is to utilize the energy derived from nucleoside triphosphate hydrolysis to translocate along nucleic acid strands, unwind/separate the helical structure of double-stranded nucleic acid, and, in some cases, disrupt protein–nucleic acid interactions. Because of their essential function, helicases are ubiquitous and evolutionary conserved proteins. This chapter briefly highlights helicase structure and activities and provides examples of the helicases involved in nucleic acid metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gorbalenya A. E. and Koonin E. V. (1993) Helicases: amino acid sequence comparisons and structure-function relationships. Curr. Opin. Struct. Biol. 3, 419–429.

    Article  CAS  Google Scholar 

  2. Singleton M. R., Dillingham M. S., and Wigley D. B. (2007) Structure and mechanism of helicases and nucleic acid translocases. Annu. Rev. Biochem. 76, 23–50.

    Article  PubMed  CAS  Google Scholar 

  3. Subramanya H. S., Bird L. E., Brannigan J. A., and Wigley D. B. (1996) Crystal structure of a DExx box DNA helicase. Nature 384, 379–383.

    Article  PubMed  CAS  Google Scholar 

  4. Korolev S., Hsieh J., Gauss G. H., Lohman T. M., and Waksman G. (1997) Major domain swiveling revealed by the crystal structures of complexes of E. coli Rep helicase bound to single-stranded DNA and ADP. Cell 90, 635–647.

    Article  PubMed  CAS  Google Scholar 

  5. Singleton M. R., Dillingham M. S., Gaudier M., Kowalczykowski S. C., and Wigley D. B. (2004) Crystal structure of RecBCD enzyme reveals a machine for processing DNA breaks. Nature 432, 187–193.

    Article  PubMed  CAS  Google Scholar 

  6. Kim J. L., Morgenstern K. A., Griffith J. P., Dwyer M. D., Thomson J. A., Murcko M. A., Lin C., and Caron P. R. (1998) Hepatitis C virus NS3 RNA helicase domain with a bound oligonucleotide: the crystal structure provides insights into the mode of unwinding. Structure 6, 89–100.

    Article  PubMed  CAS  Google Scholar 

  7. Sengoku T., Nureki O., Nakamura A., Kobayashi S., and Yokoyama S. (2006) Structural basis for RNA unwinding by the DEAD-box protein Drosophila Vasa. Cell 125, 287–300.

    Article  PubMed  CAS  Google Scholar 

  8. Skordalakes E. and Berger J. M. (2003) Structure of the Rho transcription terminator: mechanism of mRNA recognition and helicase loading. Cell 114, 135–146.

    Article  PubMed  CAS  Google Scholar 

  9. Caruthers J. M., Johnson E. R., and Mckay D. B. (2000) Crystal structure of yeast initiation factor 4A, a DEAD-box RNA helicase. Proc. Natl. Acad. Sci. USA 97, 13080–13085.

    Article  PubMed  CAS  Google Scholar 

  10. Cheng Z., Muhlrad D., Lim M. K., Parker R., and Song H. (2007) Structural and functional insights into the human Upf1 helicase core. EMBO J. 26, 253–264.

    Article  PubMed  CAS  Google Scholar 

  11. Delagoutte E. and Von Hippel P. H. (2002) Helicase mechanisms and the coupling of helicases within macromolecular machines. Part I: Structures and properties of isolated helicases. Q. Rev. Biophys. 35, 431–478.

    Article  PubMed  CAS  Google Scholar 

  12. Caruthers J. M. and Mckay D. B. (2002) Helicase structure and mechanism. Curr. Opin. Struct. Biol. 12, 123–133.

    Article  PubMed  CAS  Google Scholar 

  13. Jankowsky E. and Fairman M. E. (2007) RNA helicases – one fold for many functions. Curr. Opin. Struct. Biol. 17, 316–324.

    Article  PubMed  CAS  Google Scholar 

  14. Pyle A. M. (2008) Translocation and unwinding mechanisms of RNA and DNA helicases. Annu. Rev. Biophys. 37, 317–336.

    Article  PubMed  CAS  Google Scholar 

  15. Levin M. K., Gurjar M., and Patel S. S. (2005) A Brownian motor mechanism of translocation and strand separation by hepatitis C virus helicase. Nat. Struct. Mol. Biol. 12, 429–435.

    Article  PubMed  CAS  Google Scholar 

  16. Duderstadt K. E. and Berger J. M. (2008) AAA+ ATPases in the initiation of DNA replication. Crit. Rev. Biochem. Mol. Biol. 43, 163–187.

    Article  PubMed  CAS  Google Scholar 

  17. Lohman T. M., Tomko E. J., and Wu C. G. (2008) Non-hexameric DNA helicases and translocases: mechanisms and regulation. Nat. Rev. Mol. Cell Biol. 9, 391–401.

    Article  PubMed  CAS  Google Scholar 

  18. Von Hippel P. H. and Delagoutte E. (2003) Macromolecular complexes that unwind nucleic acids. Bioessays 25, 1168–1177.

    Article  CAS  Google Scholar 

  19. Zhang S. and Grosse F. (1994) Nuclear DNA helicase II unwinds both DNA and RNA. Biochemistry 33, 3906–3912.

    Article  PubMed  CAS  Google Scholar 

  20. Pang P. S., Jankowsky E., Planet P. J., and Pyle A. M. (2002) The hepatitis C viral NS3 protein is a processive DNA helicase with cofactor enhanced RNA unwinding. EMBO J. 21, 1168–1176.

    Article  PubMed  CAS  Google Scholar 

  21. Boule J. B. and Zakian V. A. (2007) The yeast Pif1p DNA helicase preferentially unwinds RNA DNA substrates. Nucleic Acids Res. 35, 5809–5818.

    Article  PubMed  CAS  Google Scholar 

  22. Linder P., Lasko P. F., Ashburner M., Leroy P., Nielsen P. J., Nishi K., Schnier J., and Slonimski P. P. (1989) Birth of the D-E-A-D box. Nature 337, 121–122.

    Article  PubMed  CAS  Google Scholar 

  23. Linder P. (2006) Dead-box proteins: a family affair – active and passive players in RNP-remodeling. Nucleic Acids Res. 34, 4168–4180.

    Article  PubMed  CAS  Google Scholar 

  24. Abdelhaleem M., Maltais L., and Wain H. (2003) The human DDX and DHX gene families of putative RNA helicases. Genomics 81, 618–622.

    Article  PubMed  CAS  Google Scholar 

  25. Yang Q., Del Campo M., Lambowitz A. M., and Jankowsky E. (2007) DEAD-box proteins unwind duplexes by local strand separation. Mol. Cell 28, 253–263.

    Article  PubMed  CAS  Google Scholar 

  26. Yang Q. and Jankowsky E. (2006) The DEAD-box protein Ded1 unwinds RNA duplexes by a mode distinct from translocating helicases. Nat. Struct. Mol. Biol. 13, 981–986.

    Article  PubMed  CAS  Google Scholar 

  27. Jankowsky E., Gross C. H., Shuman S., and Pyle A. M. (2000) The DExH protein NPH-II is a processive and directional motor for unwinding RNA. Nature 403, 447–451.

    Article  PubMed  CAS  Google Scholar 

  28. Jankowsky E., Gross C. H., Shuman S., and Pyle A. M. (2001) Active disruption of an RNA-protein interaction by a DExH/D RNA helicase. Science 291, 121–125.

    Article  PubMed  CAS  Google Scholar 

  29. Yang Q. and Jankowsky E. (2005) ATP- and ADP-dependent modulation of RNA unwinding and strand annealing activities by the DEAD-box protein DED1. Biochemistry 44, 13591–13601.

    Article  PubMed  CAS  Google Scholar 

  30. Jankowsky E. and Bowers H. (2006) Remodeling of ribonucleoprotein complexes with DExH/D RNA helicases. Nucleic Acids Res. 34, 4181–4188.

    Article  PubMed  CAS  Google Scholar 

  31. Delagoutte E. and Von Hippel P. H. (2003) Helicase mechanisms and the coupling of helicases within macromolecular machines. Part II: Integration of helicases into cellular processes. Q Rev Biophys 36, 1–69.

    Article  PubMed  CAS  Google Scholar 

  32. Silverman E., Edwalds-Gilbert G., and Lin R. J. (2003) DExD/H-box proteins and their partners: helping RNA helicases unwind. Gene 312, 1–16.

    Article  PubMed  CAS  Google Scholar 

  33. Pomerantz R. T. and O‘donnell M. (2007) Replisome mechanics: insights into a twin DNA polymerase machine. Trends Microbiol. 15, 156–164.

    Article  PubMed  CAS  Google Scholar 

  34. Corn J. E. and Berger J. M. (2006) Regulation of bacterial priming and daughter strand synthesis through helicase-primase interactions. Nucleic Acids Res. 34, 4082–4088.

    Article  PubMed  CAS  Google Scholar 

  35. Nakai H. and Richardson C. C. (1988) Leading and lagging strand synthesis at the replication fork of bacteriophage T7. Distinct properties of T7 gene 4 protein as a helicase and primase. J. Biol. Chem. 263, 9818–9830.

    PubMed  CAS  Google Scholar 

  36. Donmez I. and Patel S. S. (2006) Mechanisms of a ring shaped helicase. Nucleic Acids Res. 34, 4216–4224.

    Article  PubMed  CAS  Google Scholar 

  37. Maiorano D., Lutzmann M., and Mechali M. (2006) MCM proteins and DNA replication. Curr. Opin. Cell Biol. 18, 130–136.

    Article  PubMed  CAS  Google Scholar 

  38. Labib K., Tercero J. A., and Diffley J. F. (2000) Uninterrupted MCM2-7 function required for DNA replication fork progression. Science 288, 1643–1647.

    Article  PubMed  CAS  Google Scholar 

  39. Moyer S. E., Lewis P. W., and Botchan M. R. (2006) Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. Proc. Natl. Acad. Sci. USA 103, 10236–10241.

    Article  PubMed  CAS  Google Scholar 

  40. Pacek M., Tutter A. V., Kubota Y., Takisawa H., and Walter J. C. (2006) Localization of MCM2-7, Cdc45, and GINS to the site of DNA unwinding during eukaryotic DNA replication. Mol. Cell 21, 581–587.

    Article  PubMed  CAS  Google Scholar 

  41. Gambus A., Jones R. C., Sanchez-Diaz A., Kanemaki M., Van Deursen F., Edmondson R. D., and Labib K. (2006) GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nat. Cell Biol. 8, 358–366.

    Article  PubMed  CAS  Google Scholar 

  42. Bochman M. L. and Schwacha A. (2008) The Mcm2-7 complex has in vitro helicase activity. Mol. Cell 31, 287–293.

    Article  PubMed  CAS  Google Scholar 

  43. Matson S. W. and Robertson A. B. (2006) The UvrD helicase and its modulation by the mismatch repair protein MutL. Nucleic Acids Res. 34, 4089–4097.

    Article  PubMed  CAS  Google Scholar 

  44. Jiricny J. (2006) The multifaceted mismatch-repair system. Nat. Rev. Mol. Cell Biol. 7, 335–346.

    Article  PubMed  CAS  Google Scholar 

  45. Truglio J. J., Croteau D. L., Van Houten B., and Kisker C. (2006) Prokaryotic nucleotide excision repair: the UvrABC system. Chem. Rev. 106, 233–252.

    Article  PubMed  CAS  Google Scholar 

  46. Lehmann A. R. (2001) The xeroderma pigmentosum group D (XPD) gene: one gene, two functions, three diseases. Genes Dev. 15, 15–23.

    Article  PubMed  CAS  Google Scholar 

  47. Fan L., Fuss J. O., Cheng Q. J., Arvai A. S., Hammel M., Roberts V. A., Cooper P. K., and Tainer J. A. (2008) XPD helicase structures and activities: insights into the cancer and aging phenotypes from XPD mutations. Cell 133, 789–800.

    Article  PubMed  CAS  Google Scholar 

  48. Liu H., Rudolf J., Johnson K. A., Mcmahon S. A., Oke M., Carter L., Mcrobbie A. M., Brown S. E., Naismith J. H., and White M. F. (2008) Structure of the DNA repair helicase XPD. Cell 133, 801–812.

    Article  PubMed  CAS  Google Scholar 

  49. Wolski S. C., Kuper J., Hanzelmann P., Truglio J. J., Croteau D. L., Van Houten B., and Kisker C. (2008) Crystal structure of the FeS cluster-containing nucleotide excision repair helicase XPD. PLoS Biol. 6, e149.

    Article  PubMed  CAS  Google Scholar 

  50. Dillingham M. S. and Kowalczykowski S. C. (2008) RecBCD enzyme and the repair of double-stranded DNA breaks. Microbiol. Mol. Biol. Rev. 72, 642–671, Table of Contents.

    Article  PubMed  CAS  Google Scholar 

  51. Wigley D. B. (2007) RecBCD: the supercar of DNA repair. Cell 131, 651–653.

    Article  PubMed  CAS  Google Scholar 

  52. Spies M., Amitani, I., Baskin R. J., and Kowalczykowski S. C. (2007) RecBCD enzyme switches lead motor subunits in response to chi recognition. Cell 131, 694–705.

    Article  PubMed  CAS  Google Scholar 

  53. Cobb J. A. and Bjergbaek L. (2006) RecQ helicases: lessons from model organisms. Nucleic Acids Res. 34, 4106–4114.

    Article  PubMed  CAS  Google Scholar 

  54. Hanada K. and Hickson I. D. (2007) Molecular genetics of RecQ helicase disorders. Cell Mol. Life Sci. 64, 2306–2322.

    Article  PubMed  CAS  Google Scholar 

  55. Ouyang K. J., Woo L. L., and Ellis N. A. (2008) Homologous recombination and maintenance of genome integrity: cancer and aging through the prism of human RecQ helicases. Mech. Ageing Dev. 129, 425–440.

    Article  PubMed  CAS  Google Scholar 

  56. Brosh R. M., Jr. and Bohr V. A. (2007) Human premature aging, DNA repair and RecQ helicases. Nucleic Acids Res. 35, 7527–7544.

    Article  PubMed  CAS  Google Scholar 

  57. Ciampi M. S. (2006) Rho-dependent terminators and transcription termination. Microbiology 152, 2515–2528.

    Article  PubMed  CAS  Google Scholar 

  58. Nakajima T., Uchida C., Anderson S. F., Lee C. G., Hurwitz J., Parvin J. D., and Montminy M. (1997) RNA helicase A mediates association of CBP with RNA polymerase II. Cell 90, 1107–1112.

    Article  PubMed  CAS  Google Scholar 

  59. Myohanen S. and Baylin S. B. (2001) Sequence-specific DNA binding activity of RNA helicase A to the p16INK4a promoter. J. Biol. Chem. 276, 1634–1642.

    Article  PubMed  CAS  Google Scholar 

  60. Zhong X. and Safa A. R. (2004) RNA helicase A in the MEF1 transcription factor complex up-regulates the MDR1 gene in multidrug-resistant cancer cells. J. Biol. Chem. 279, 17134–17141.

    Article  PubMed  CAS  Google Scholar 

  61. Fuller-Pace F. V. (2006) DExD/H box RNA helicases: multifunctional proteins with important roles in transcriptional regulation. Nucleic Acids Res. 34, 4206–4215.

    Article  PubMed  CAS  Google Scholar 

  62. Endoh H., Maruyama K., Masuhiro Y., Kobayashi Y., Goto M., Tai H., Yanagisawa J., Metzger D., Hashimoto S., and Kato S. (1999) Purification and identification of p68 RNA helicase acting as a transcriptional coactivator specific for the activation function 1 of human estrogen receptor alpha. Mol. Cell Biol. 19, 5363–5372.

    PubMed  CAS  Google Scholar 

  63. Rossow K. L. and Janknecht R. (2003) Synergism between p68 RNA helicase and the transcriptional coactivators CBP and p300. Oncogene 22, 151–156.

    Article  PubMed  CAS  Google Scholar 

  64. Clark E. L., Fuller-Pace F. V., Elliott D. J., and Robson C. N. (2008) Coupling transcription to RNA processing via the p68 DEAD box RNA helicase androgen receptor co-activator in prostate cancer. Biochem. Soc. Trans. 36, 546–547.

    Article  PubMed  CAS  Google Scholar 

  65. Granneman S. and Baserga S. J. (2004) Ribosome biogenesis: of knobs and RNA processing. Exp. Cell Res. 296, 43–50.

    Article  PubMed  CAS  Google Scholar 

  66. Cordin O., Banroques J., Tanner N. K., and Linder P. (2006) The DEAD-box protein family of RNA helicases. Gene 367, 17–37.

    Article  PubMed  CAS  Google Scholar 

  67. De La Cruz J., Kressler D., and Linder P. (1999) Unwinding RNA in Saccharomyces cerevisiae: DEAD-box proteins and related families. Trends Biochem. Sci. 24, 192–198.

    Article  PubMed  Google Scholar 

  68. Granneman S., Bernstein K. A., Bleichert F., and Baserga S. J. (2006) Comprehensive mutational analysis of yeast DEXD/H box RNA helicases required for small ribosomal subunit synthesis. Mol. Cell Biol. 26, 1183–1194.

    Article  PubMed  CAS  Google Scholar 

  69. Bernstein K. A., Granneman S., Lee A. V., Manickam S., and Baserga S. J. (2006) Comprehensive mutational analysis of yeast DEXD/H box RNA helicases involved in large ribosomal subunit biogenesis. Mol. Cell Biol. 26, 1195–1208.

    Article  PubMed  CAS  Google Scholar 

  70. Staley J. P. and Guthrie C. (1998) Mechanical devices of the spliceosome: motors, clocks, springs, and things. Cell 92, 315–326.

    Article  PubMed  CAS  Google Scholar 

  71. Kim S. H. and Lin R. J. (1996) Spliceosome activation by PRP2 ATPase prior to the first transesterification reaction of pre-mRNA splicing. Mol. Cell Biol. 16, 6810–6819.

    PubMed  CAS  Google Scholar 

  72. Schwer B. and Guthrie C. (1991) PRP16 is an RNA-dependent ATPase that interacts transiently with the spliceosome. Nature 349, 494–499.

    Article  PubMed  CAS  Google Scholar 

  73. Schwer B. (2008) A conformational rearrangement in the spliceosome sets the stage for Prp22-dependent mRNA release. Mol. Cell. 30, 743–754.

    Article  PubMed  CAS  Google Scholar 

  74. Martin A., Schneider S., and Schwer B. (2002) Prp43 is an essential RNA-dependent ATPase required for release of lariat-intron from the spliceosome. J. Biol. Chem. 277, 17743–17750.

    Article  PubMed  CAS  Google Scholar 

  75. Rogers G. W., Jr., Komar A. A., and Merrick W. C. (2002) eIF4A: the godfather of the DEAD box helicases. Prog. Nucleic Acid Res. Mol. Biol. 72, 307–331.

    Article  PubMed  CAS  Google Scholar 

  76. Chuang R. Y., Weaver P. L., Liu Z., and Chang T. H. (1997) Requirement of the DEAD-Box protein ded1p for messenger RNA translation. Science 275, 1468–1471.

    Article  PubMed  CAS  Google Scholar 

  77. De La Cruz J., Iost I., Kressler D., and Linder P. (1997) The p20 and Ded1 proteins have antagonistic roles in eIF4E-dependent translation in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 94, 5201–5206.

    Article  PubMed  Google Scholar 

  78. Carrera P., Johnstone O., Nakamura A., Casanova J., Jackle H., and Lasko P. (2000) VASA mediates translation through interaction with a Drosophila yIF2 homolog. Mol. Cell 5, 181–187.

    Article  PubMed  CAS  Google Scholar 

  79. Liou G. G., Chang H. Y., Lin C. S., and Lin-Chao S. (2002) DEAD box RhlB RNA helicase physically associates with exoribonuclease PNPase to degrade double-stranded RNA independent of the degradosome-assembling region of RNase E. J. Biol. Chem. 277, 41157–41162.

    Article  PubMed  CAS  Google Scholar 

  80. Lacava J., Houseley J., Saveanu C., Petfalski E., Thompson E., Jacquier A., and Tollervey D. (2005) RNA degradation by the exosome is promoted by a nuclear polyadenylation complex. Cell 121, 713–724.

    Article  PubMed  CAS  Google Scholar 

  81. Anderson J. S. and Parker R. P. (1998) The 3′ to 5′ degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3′ to 5′ exonucleases of the exosome complex. EMBO J. 17, 1497–1506.

    Article  PubMed  CAS  Google Scholar 

  82. Tran H., Schilling M., Wirbelauer C., Hess D., and Nagamine Y. (2004) Facilitation of mRNA deadenylation and decay by the exosome-bound, DExH protein RHAU. Mol. Cell 13, 101–111.

    Article  PubMed  CAS  Google Scholar 

  83. Peltz S. W., Brown A. H., and Jacobson A. (1993) mRNA destabilization triggered by premature translational termination depends on at least three cis-acting sequence elements and one trans-acting factor. Genes Dev. 7, 1737–1754.

    Article  PubMed  CAS  Google Scholar 

  84. Korhonen J. A., Gaspari M., and Falkenberg M. (2003) TWINKLE Has 5′ → 3′ DNA helicase activity and is specifically stimulated by mitochondrial single-stranded DNA-binding protein. J. Biol. Chem. 278, 48627–48632.

    Article  PubMed  CAS  Google Scholar 

  85. Spelbrink J. N., Li F. Y., Tiranti V., Nikali K., Yuan Q. P., Tariq M., Wanrooij S., Garrido N., Comi G., Morandi L., Santoro L., Toscano A., Fabrizi G. M., Somer H., Croxen R., Beeson D., Poulton J., Suomalainen A., Jacobs H. T., Zeviani M., and Larsson C. (2001) Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria. Nat. Genet. 28, 223–231.

    Article  PubMed  CAS  Google Scholar 

  86. Tyynismaa H., Sembongi H., Bokori-Brown M., Granycome C., Ashley N., Poulton J., Jalanko A., Spelbrink J. N., Holt I. J., and Suomalainen A. (2004) Twinkle helicase is essential for mtDNA maintenance and regulates mtDNA copy number. Hum. Mol. Genet. 13, 3219–3227.

    Article  PubMed  CAS  Google Scholar 

  87. Shutt T. E. and Gray M. W. (2006) Twinkle, the mitochondrial replicative DNA helicase, is widespread in the eukaryotic radiation and may also be the mitochondrial DNA primase in most eukaryotes. J. Mol. Evol. 62, 588–599.

    Article  PubMed  CAS  Google Scholar 

  88. Cheng X., Dunaway S., and Ivessa A. S. (2007) The role of Pif1p, a DNA helicase in Saccharomyces cerevisiae, in maintaining mitochondrial DNA. Mitochondrion 7, 211–222.

    Article  PubMed  CAS  Google Scholar 

  89. Pinter S. F., Aubert S. D., and Zakian V. A. (2008) The Schizosaccharomyces pombe Pfh1p DNA helicase is essential for the maintenance of nuclear and mitochondrial DNA. Mol. Cell Biol. 28, 6594–6608.

    Article  PubMed  CAS  Google Scholar 

  90. Foury F. and Kolodynski J. (1983) pif mutation blocks recombination between mitochondrial rho+ and rho– genomes having tandemly arrayed repeat units in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 80, 5345–5349.

    Article  PubMed  CAS  Google Scholar 

  91. Boule J. B. and Zakian V. A. (2006) Roles of Pif1-like helicases in the maintenance of genomic stability. Nucleic Acids Res. 34, 4147–4153.

    Article  PubMed  CAS  Google Scholar 

  92. Gagliardi D., Stepien P. P., Temperley R. J., Lightowlers R. N., and Chrzanowska-Lightowlers Z. M. (2004) Messenger RNA stability in mitochondria: different means to an end. Trends Genet. 20, 260–267.

    Article  PubMed  CAS  Google Scholar 

  93. Mohr S., Stryker J. M., and Lambowitz A. M. (2002) A DEAD-box protein functions as an ATP-dependent RNA chaperone in group I intron splicing. Cell 109, 769–779.

    Article  PubMed  CAS  Google Scholar 

  94. Huang H. R., Rowe C. E., Mohr S., Jiang Y., Lambowitz A. M., and Perlman P. S. (2005) The splicing of yeast mitochondrial group I and group II introns requires a DEAD-box protein with RNA chaperone function. Proc. Natl. Acad. Sci. USA 102, 163–168.

    Article  PubMed  CAS  Google Scholar 

  95. Schmidt U., Lehmann K., and Stahl U. (2002) A novel mitochondrial DEAD box protein (Mrh4) required for maintenance of mtDNA in Saccharomyces cerevisiae. FEMS Yeast Res. 2, 267–276.

    PubMed  CAS  Google Scholar 

  96. Missel A., Souza A. E., Norskau G., and Goringer H. U. (1997) Disruption of a gene encoding a novel mitochondrial DEAD-box protein in Trypanosoma brucei affects edited mRNAs. Mol. Cell Biol. 17, 4895–4903.

    PubMed  CAS  Google Scholar 

  97. Margossian S. P., Li H., Zassenhaus H. P., and Butow R. A. (1996) The DExH box protein Suv3p is a component of a yeast mitochondrial 3′-to-5′ exoribonuclease that suppresses group I intron toxicity. Cell 84, 199–209.

    Article  PubMed  CAS  Google Scholar 

  98. Pereira M., Mason P., Szczesny R. J., Maddukuri L., Dziwura S., Jedrzejczak R., Paul E., Wojcik A., Dybczynska L., Tudek B., Bartnik E., Klysik J., Bohr V. A., and Stepien P. P. (2007) Interaction of human SUV3 RNA/DNA helicase with BLM helicase; loss of the SUV3 gene results in mouse embryonic lethality. Mech. Ageing Dev. 128, 609–617.

    Article  PubMed  CAS  Google Scholar 

  99. Khidr L., Wu G., Davila A., Procaccio V., Wallace D., and Lee W. H. (2008) Role of SUV3 helicase in maintaining mitochondrial homeostasis in human cells. J. Biol. Chem. 283, 27064–27073.

    Article  PubMed  CAS  Google Scholar 

  100. Valgardsdottir R., Brede G., Eide L. G., Frengen E., and Prydz H. (2001) Cloning and characterization of MDDX28, a putative dead-box helicase with mitochondrial and nuclear localization. J. Biol. Chem. 276, 32056–32063.

    Article  PubMed  CAS  Google Scholar 

  101. Wang Y. and Bogenhagen D. F. (2006) Human mitochondrial DNA nucleoids are linked to protein folding machinery and metabolic enzymes at the mitochondrial inner membrane. J. Biol. Chem. 281, 25791–25802.

    Article  PubMed  CAS  Google Scholar 

  102. Alli Z., Ackerley C., Chen Y., Al-Saud B., and Abdelhaleem M. (2006) Nuclear and mitochondrial localization of the putative RNA helicase DHX32. Exp. Mol. Pathol. 81, 245–248.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Abdelhaleem, M. (2009). Helicases: An Overview. In: Abdelhaleem, M. (eds) Helicases. Methods in Molecular Biology, vol 587. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-355-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-355-8_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-354-1

  • Online ISBN: 978-1-60327-355-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics