Skip to main content

Refolding of TIMP-2 from Escherichia coli Inclusion Bodies

  • Protocol
  • First Online:
Matrix Metalloproteinase Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 622))

Abstract

The TIMP proteins contain six intramolecular disulfide bonds and form unfolded insoluble aggregates when expressed in E. coli. Eukaryotic expression systems provide the necessary post-translational modification apparatus to produce authentic TIMP but are comparatively slow and more expensive. This chapter describes the production of native TIMP-2 (both full-length and the N-terminal domain) from E. coli by in vitro refolding. The technique allows high-level intracellular expression and efficient isolation of the recombinant product without the use of fusion tags or partners. Protein purity after ion exchange and gel filtration chromatography was judged to be greater than 95% with yields of 15 mg/L from LB medium and 10 mg/L from minimal medium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thatcher, D. R. and Hitchcock, A. (1994) Protein folding in biotechnology. In Pain, R. H. (ed.), Mechanisms of protein folding. Oxford, UK: Frontiers in Molecular Biology Series, IRL Press, pp. 229–261.

    Google Scholar 

  2. Fischer, B., Sumner, I., and Goodenough, P. (1993) Isolation, renaturation and formation of disulphide bonds of eukaryotic proteins expressed in Escherichia coli as inclusion bodies. Biotechnol Bioengineering 41, 3–13.

    Article  CAS  Google Scholar 

  3. Wetzel, R. (1992) Principles of protein stability. Part 2 - enhanced folding and stabilization of proteins by suppression of aggregation in vitro and in vivo. In Rees, A. R., Sternberg, M. J. E., and Wetzel, R. (eds.), Protein engineering – a practical approach. Oxford, UK: IRL Press, pp. 191–219.

    Google Scholar 

  4. Murphy, G., Houbrechts, A., Cockett, M. I., Williamson, R. A., O’Shea, M., and Docherty, A. J. P. (1991) The N-terminal domain of tissue inhibitor of metalloproteinases retains metalloproteinase inhibitory activity. Biochem 30, 8097–8102.

    Article  CAS  Google Scholar 

  5. Williamson, R. A., Natalia, D., Gee, C. K., Murphy, G., Carr, M. D., and Freedman, R. B. (1996). Chemically and conformationally authentic active domain of human tissue inhibitor of metalloproteinases-2 refolded from bacterial inclusion bodies. Eur J Biochem 241, 476–483.

    Article  PubMed  CAS  Google Scholar 

  6. Marston, F. A. O., Lowe, P. A., Doel, M. T., Schoemaker, J. M., White, S., and Angal, S. (1984) Purification of calf prochymosin (prorennin) synthesized in Escherichia coli. Bio/Technol 2, 800–807.

    Article  CAS  Google Scholar 

  7. Williamson, R. A., Carr, M. D., Frenkiel, T. A., Feeney, J., and Freedman, R. B. (1997). Mapping the binding site for matrix metalloproteinase on the N-terminal domain of the tissue inhibitor of metalloproteinases-2 by NMR chemical shift perturbation. Biochemistry 36, 13882–13889.

    Article  PubMed  CAS  Google Scholar 

  8. Muskett, F. W., Frenkiel, T. A., Feeney, J., Freedman, R. B., Carr, M. D., and Williamson, R. A. (1998). High resolution structure of the N-terminal domain of tissue inhibitor of metalloproteinases-2 and characterisation of its interaction site with matrix metalloproteinase-3. J Biol Chem 273, 21736–21743.

    Article  PubMed  CAS  Google Scholar 

  9. Williamson, R. A., Muskett, F. W., Howard, M. J., Freedman, R. B., and Carr, M. D. (1999). The effect of matrix metalloproteinase complex formation on the conformational mobility of tissue inhibitor of metalloproteinases-2 (TIMP-2). J Biol Chem 274, 37226–37232.

    Article  PubMed  CAS  Google Scholar 

  10. Bulter, G. S., Hutton, M., Wattam, B. A., Williamson, R.A., Knauper, V., Willenbrock, F., and Murphy, G. (1999) The specificity of TIMP-2 for matrix metalloproteinases can be modified by single amino acid mutations. J Biol Chem 274, 20391–20396.

    Article  Google Scholar 

  11. Williamson, R. A., Hutton, M., Vogt, G., Rapti, M., Knauper, V., Carr, M. D, andMurphy, G. (2001) Tyrosine 36 plays a critical role in the interaction of the AB loop of TIMP-2 with matrix metalloproteinase-14. J Biol Chem 276, 32966–32970.

    Article  PubMed  CAS  Google Scholar 

  12. Rapti, M., Knauper, V., Murphy, G., and Williamson, R. A. (2006) Characterization of the AB loop of TIMP-2. Involvement in pro-MMP-2 activation. J Biol Chem 281, 23386–23394.

    Article  PubMed  CAS  Google Scholar 

  13. Gill, S. C. and Von Hippel, P. H. (1989) Calculation of molar extinction coefficients from amino acid sequence data. Anal Biochem 182, 319–326.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Williamson, R.A. (2010). Refolding of TIMP-2 from Escherichia coli Inclusion Bodies. In: Clark, I. (eds) Matrix Metalloproteinase Protocols. Methods in Molecular Biology, vol 622. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-299-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-299-5_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-298-8

  • Online ISBN: 978-1-60327-299-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics