Skip to main content

Therapeutic Applications of RNAi for Silencing Virus Replication

  • Protocol
  • First Online:
Therapeutic Applications of RNAi

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 555))

Abstract

RNA interference (RNAi) is an evolutionarily conserved gene-silencing mechanism in which small 19–23-nucleotide double-stranded RNA molecules, or small interfering RNAs (siRNAs), target cognate RNA for destruction with exquisite potency and selectivity. The RNAi machinery is believed to be expressed in all eukaryotic cells and has been shown to regulate host gene expression. Given this ability, RNAi silencing strategies have been developed to inhibit viral genes and replication in host cells. One area of growing interest is the development of synthetic siRNA drugs to target acute viral infections in which long-term gene silencing is not required or desirable. To achieve synthetic siRNA drug efficacy, these anti-viral agents need to be delivered to the appropriate host cells, as they do not readily cross the cell membrane. Varied delivery and siRNA chemical stabilization strategies are being investigated for siRNA drug delivery; however, several studies have shown that naked, unmodified siRNA drugs can be effective in silencing replication of some viruses in animal models of infection. These findings suggest that RNAi-based drugs may offer breakthrough technology to protect and treat humans and animals from viral infection. However, there are four major considerations for evaluating successful RNAi efficacy: the siRNAs must have high efficiency, show low cytotoxicity, result in minimal off-target effects, and lead to results that are reproducible between experiments. The methods and caveats to achieve these goals are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T. (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells Nature 411, 494.

    Article  PubMed  CAS  Google Scholar 

  2. Amarzguioui, M., Rossi, J. J., and Kim, D. (2005) Approaches for chemically synthesized siRNA and vector-mediated RNAi FEBS Lett 579, 5974–5981.

    Article  PubMed  CAS  Google Scholar 

  3. de Fougerolles, A., Vornlocher, H.-P., Maraganore, J., and Lieberman, J. (2007) Interfering with disease: a progress report on siRNA-based therapeutics Nat Rev Drug Discov 6, 443–453.

    Article  PubMed  Google Scholar 

  4. Fewell, G. D., and Schmitt, K. (2006) Vector-based RNAi approaches for stable, inducible and genome-wide screens Drug Discov Today 11, 975–982.

    Article  PubMed  CAS  Google Scholar 

  5. Hamasaki, K., Kogure, K., and Ohwada, K. (1996) A biological method for the quantitative measurement of tetrodotoxin (TTX): tissue culture bioassay in combination with a water-soluble tetrazolium salt. Toxicon 34, 490–495.

    Article  PubMed  CAS  Google Scholar 

  6. Elbashir, S. M., Lendeckel, W., and Tuschl, T. (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs Genes Dev. 15, 188–200.

    Article  PubMed  CAS  Google Scholar 

  7. Birmingham, A., Anderson, E., Sullivan, K., Reynolds, A., Boese, Q., Leake, D., Karpilow, J., and Khvorova, A. (2007) A protocol for designing siRNAs with high functionality and specificity Nat Protocols 2, 2068–2078.

    Article  CAS  Google Scholar 

  8. Gonzalez-Alegre, P., Bode, N., Davidson, B. L., and Paulson, H. L. (2005) Silencing primary dystonia: lentiviral-mediated RNA interference therapy for DYT1 dystonia. J Neurosci 25, 10502–10509.

    Article  PubMed  CAS  Google Scholar 

  9. Dann, C. (2007) New technology for an old favorite: lentiviral transgenesis and RNAi in rats. Transgenic Res 16, 571–580.

    Article  PubMed  CAS  Google Scholar 

  10. Ge, Q., McManus, M. T., Nguyen, T., Shen, C. H., Sharp, P. A., Eisen, H. N., and Chen, J. (2003) RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription Proc Natl Acad Sci USA 100, 2718–2723.

    Article  PubMed  CAS  Google Scholar 

  11. Sledz, C. A., Holko, M., de Veer, M. J., Silverman, R. H., and Williams, B. R. (2003) Activation of the interferon system by short-interfering RNAs. Nat Cell Biol 5, 834–839.

    Article  PubMed  CAS  Google Scholar 

  12. Sledz, C. A., and Williams, B. R. G. (2004) RNA interference and double-stranded-RNA-activated pathways Biochem Soc Trans 32, 952–956.

    Article  PubMed  CAS  Google Scholar 

  13. Perrimon, N., Friedman, A., Mathey-Prevot, B., and Eggert, U. S. (2007) Drug–target identification in Drosophila cells: combining high-throughout RNAi and small-molecule screens. Drug Discov Today 12, 28–33.

    Article  PubMed  CAS  Google Scholar 

  14. Birmingham, A., Anderson, E. M., Reynolds, A., Ilsley-Tyree, D., Leake, D., Fedorov, Y., Baskerville, S., Maksimova, E., Robinson, K., Karpilow, J., Marshall, W. S., and Khvorova, A. (2006) 3' UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat Meth 3, 199–204.

    Article  CAS  Google Scholar 

  15. Cullen, L. M., and Arndt, G. M. (2005) Genome-wide screening for gene function using RNAi in mammalian cells. Immunol Cell Biol 83, 217–223.

    Article  PubMed  CAS  Google Scholar 

  16. Masters, J. R., Thomson, J. A., Daly-Burns, B., Reid, Y. A., Dirks, W. G., Packer, P., Toji, L. H., Ohno, T., Tanabe, H., Arlett, C. F., Kelland, L. R., Harrison, M., Virmani, A., Ward, T. H., Ayres, K. L., and Debenham, P. G. (2001) Short tandem repeat profiling provides an international reference standard for human cell lines Proc Natl Acad Sci USA 98, 8012–8017.

    Article  PubMed  CAS  Google Scholar 

  17. Lingel, A., and Izaurralde, E. (2004) RNAi: finding the elusive endonuclease. RNA 10, 1675–1679.

    Article  PubMed  CAS  Google Scholar 

  18. Koller, E., Propp, S., Murray, H., Lima, W., Bhat, B., Prakash, T. P., Allerson, C. R., Swayze, E. E., Marcusson, E. G., and Dean, N. M. (2006) Competition for RISC binding predicts in vitro potency of siRNA. Nucl Acids Res 34, 4467–4476.

    Article  PubMed  CAS  Google Scholar 

  19. Vickers, T. A., Lima, W. F., Nichols, J. G., and Crooke, S. T. (2007) Reduced levels of Ago2 expression result in increased siRNA competition in mammalian cells Nucl Acids Res. 35, 6598–6610.

    Article  PubMed  CAS  Google Scholar 

  20. Reynolds, A., Anderson, E. M., Vermeulen, A., Fedorov, Y., Robinson, K., Leake, D., Karpilow, J., Marshall, W. S., and Khvorova, A. (2006) Induction of the interferon response by siRNA is cell type- and duplex length-dependent. RNA 12, 988–993.

    Article  PubMed  CAS  Google Scholar 

  21. Lin, X., Ruan, X., Anderson, M. G., McDowell, J. A., Kroeger, P. E., Fesik, S. W., and Shen, Y. (2005) siRNA-mediated off-target gene silencing triggered by a 7 nt complementation. Nucl Acids Res 33, 4527–4535.

    Article  PubMed  CAS  Google Scholar 

  22. Jackson, A. L., Burchard, J., Schelter, J., Chau, B. N., Cleary, M., Lim, L., and Linsley, P. S. (2006) Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. RNA 12, 1179–1187.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Tripp, R.A., Tompkins, S.M. (2009). Therapeutic Applications of RNAi for Silencing Virus Replication. In: Rondinone, C., Reidhaar-Olson, J. (eds) Therapeutic Applications of RNAi. Methods in Molecular Biology™, vol 555. Humana Press. https://doi.org/10.1007/978-1-60327-295-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-295-7_4

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-294-0

  • Online ISBN: 978-1-60327-295-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics