Skip to main content

Generation and Functional Analysis of Zinc Finger Nucleases

  • Protocol
Gene Therapy Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 434))

Summary

The recent development of artificial endonucleases with tailored specificities has opened the door for a wide range of new applications, including the correction of mutated genes directly in the chromosome. This kind of gene therapy is based on homologous recombination, which can be stimulated by the creation of a targeted DNA double-strand break (DSB) near the site of the desired recombination event. Artificial nucleases containing zinc finger DNA-binding domains have provided important proofs of concept, showing that inserting a DSB in the target locus leads to gene correction frequencies of 1–18% in human cells. In this paper, we describe how zinc finger nucleases are assembled by polymerase chain reaction (PCR) and present two methods to assess these custom nucleases quickly in vitro and in a cell-based recombination assay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vasquez, K. M., Marburger, K., Intody, Z., and Wilson, J. H. (2001) Manipulating the mammalian genome by homologous recombination. Proc Natl Acad Sci USA 98:8403–8410.

    Article  CAS  PubMed  Google Scholar 

  2. Urnov, F. D., Miller, J. C., Lee, Y. L., Beausejour, C. M., Rock, J. M., Augustus, S., Jamieson, A. C., Porteus, M. H., Gregory, P. D., and Holmes, M. C. (2005) Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435:646–651.

    Article  CAS  PubMed  Google Scholar 

  3. Porteus, M. H. (2006) Mammalian gene targeting with designed zinc finger nucleases. Mol Ther 13:438–446.

    Article  CAS  PubMed  Google Scholar 

  4. Porteus, M. H. and Baltimore, D. (2003) Chimeric nucleases stimulate gene targeting in human cells. Science 300:763.

    Article  PubMed  Google Scholar 

  5. Alwin, S., Gere, M. B., Guhl, E., Effertz, K., Barbas, C. F., 3rd, Segal, D. J., Weitzman, M. D., and Cathomen, T. (2005) Custom zinc-finger nucleases for use in human cells. Mol Ther 12:610–617.

    Article  CAS  PubMed  Google Scholar 

  6. Beumer, K., Bhattacharyya, G., Bibikova, M., Trautman, J. K., and Carroll, D. (2006) Efficient gene targeting in Drosophila with zinc-finger nucleases. Genetics 172:2391–2403.

    Article  CAS  PubMed  Google Scholar 

  7. Wright, D. A., Townsend, J. A., Winfrey, R. J., Jr., Irwin, P. A., Rajagopal, J., Lonosky, P. M., Hall, B. D., Jondle, M. D., and Voytas, D. F. (2005) High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J 44:693–705.

    Article  CAS  PubMed  Google Scholar 

  8. Kim, Y. G., Cha, J., and Chandrasegaran, S. (1996) Hybrid restriction enzymes: zinc finger fusions to FokI cleavage domain. Proc Natl Acad Sci USA 93: 1156–1160.

    Article  CAS  PubMed  Google Scholar 

  9. Durai, S., Mani, M., Kandavelou, K., Wu, J., Porteus, M. H., and Chandrasegaran, S. (2005) Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res 33:5978–5990.

    Article  CAS  PubMed  Google Scholar 

  10. Pavletich, N. P. and Pabo, C. O. (1991) Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science 252:809–817.

    Article  CAS  PubMed  Google Scholar 

  11. Rebar, E. J. and Pabo, C. O. (1994) Zinc finger phage: affinity selection of fingers with new DNA-binding specificities. Science 263:671–673.

    Article  CAS  PubMed  Google Scholar 

  12. Choo, Y. and Klug, A. (1994) Selection of DNA binding sites for zinc fingers using rationally randomized DNA reveals coded interactions. Proc Natl Acad Sci USA 91:11168–11172.

    Article  CAS  PubMed  Google Scholar 

  13. Jamieson, A. C., Wang, H., and Kim, S. H. (1996) A zinc finger directory for high-affinity DNA recognition. Proc Natl Acad Sci USA 93:12834–12839.

    Article  CAS  PubMed  Google Scholar 

  14. Wu, H., Yang, W. P., and Barbas, C. F., 3rd. (1995) Building zinc fingers by selection: toward a therapeutic application. Proc Natl Acad Sci USA 92: 344–348.

    Article  CAS  PubMed  Google Scholar 

  15. Liu, Q., Xia, Z., Zhong, X., and Case, C. C. (2002) Validated zinc finger protein designs for all 16 GNN DNA triplet targets. J Biol Chem 277: 3850–3856.

    Article  CAS  PubMed  Google Scholar 

  16. Segal, D. J., Dreier, B., Beerli, R. R., and Barbas, C. F., 3rd. (1999) Toward controlling gene expression at will: selection and design of zinc finger domains recognizing each of the 5’-GNN-3’ DNA target sequences. Proc Natl Acad Sci USA 96:2758–2763.

    Article  CAS  PubMed  Google Scholar 

  17. Dreier, B., Beerli, R. R., Segal, D. J., Flippin, J. D., and Barbas, C. F., 3rd. (2001) Development of zinc finger domains for recognition of the 5’-ANN-3’ family of DNA sequences and their use in the construction of artificial transcription factors. J Biol Chem 276:29466–29478.

    Article  CAS  PubMed  Google Scholar 

  18. Dreier, B., Fuller, R. P., Segal, D. J., Lund, C. V., Blancafort, P., Huber, A., Koksch, B., and Barbas, C. F., 3rd. (2005) Development of zinc finger domains for recognition of the 5’-CNN-3’ family DNA sequences and their use in the construction of artificial transcription factors. J Biol Chem 280:35588–35597.

    Article  CAS  PubMed  Google Scholar 

  19. Blancafort, P., Magnenat, L., and Barbas, C. F., 3rd. (2003) Scanning the human genome with combinatorial transcription factor libraries. Nat Biotechnol 21: 269–274.

    Article  CAS  PubMed  Google Scholar 

  20. Smith, J., Bibikova, M., Whitby, F. G., Reddy, A. R., Chandrasegaran, S., and Carroll, D. (2000) Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Res 28: 3361–3369.

    Article  CAS  PubMed  Google Scholar 

  21. Bitinaite, J., Wah, D. A., Aggarwal, A. K., and Schildkraut, I. (1998) FokI dimerization is required for DNA cleavage. Proc Natl Acad Sci USA 95:10570–10575.

    Article  CAS  PubMed  Google Scholar 

  22. Bibikova, M., Carroll, D., Segal, D. J., Trautman, J. K., Smith, J., Kim, Y. G., and Chandrasegaran, S. (2001) Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol Cell Biol 21:289–297.

    Article  CAS  PubMed  Google Scholar 

  23. Mandell, J. G. and Barbas, C. F., 3rd. (2006) Zinc Finger Tools: custom DNA-binding domains for transcription factors and nucleases. Nucleic Acids Res 34:W516–523.

    Article  Google Scholar 

  24. Greisman, H. A. and Pabo, C. O. (1997) A general strategy for selecting high-affinity zinc finger proteins for diverse DNA target sites. Science 275:657–661.

    Article  CAS  PubMed  Google Scholar 

  25. Isalan, M., Klug, A., and Choo, Y. (2001) A rapid, generally applicable method to engineer zinc fingers illustrated by targeting the HIV-1 promoter. Nat Biotechnol 19:656–660.

    Article  CAS  PubMed  Google Scholar 

  26. Cheng, X., Boyer, J. L., and Juliano, R. L. (1997) Selection of peptides that functionally replace a zinc finger in the Sp1 transcription factor by using a yeast combinatorial library. Proc Natl Acad Sci USA 94:14120–14125.

    Article  CAS  PubMed  Google Scholar 

  27. Hughes, M. D., Zhang, Z. R., Sutherland, A. J., Santos, A. F., and Hine, A. V. (2005) Discovery of active proteins directly from combinatorial randomized protein libraries without display, purification or sequencing: identification of novel zinc finger proteins. Nucleic Acids Res 33:e32.

    Article  PubMed  Google Scholar 

  28. Hurt, J. A., Thibodeau, S. A., Hirsh, A. S., Pabo, C. O., and Joung, J. K. (2003) Highly specific zinc finger proteins obtained by directed domain shuffling and cell-based selection. Proc Natl Acad Sci USA 100:12271–12276.

    Article  CAS  PubMed  Google Scholar 

  29. Radecke, F., Peter, I., Radecke, S., Gellhaus, K., Schwarz, K., and Cathomen, T. (2006) Targeted chromosomal gene modification in human cells by single-stranded oligodeoxynucleotides in the presence of a DNA double-strand break. Mol Ther 14:798–808.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Shamim H. Rahman for discussions and careful reading of the manuscript. This chapter is based on work supported by grants CA311/1 from the German Research Foundation (T.C.) and CA103651 from the National Cancer Institute, NIH (D.J.S.).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Cathomen, T., Segal, D.J., Brondani, V., Müller-Lerch, F. (2008). Generation and Functional Analysis of Zinc Finger Nucleases. In: Le Doux, J.M. (eds) Gene Therapy Protocols. Methods in Molecular Biology™, vol 434. Humana Press. https://doi.org/10.1007/978-1-60327-248-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-248-3_17

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-247-6

  • Online ISBN: 978-1-60327-248-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics