Skip to main content

Identification of SUMO-Binding Motifs by NMR

  • Protocol
SUMO Protocols

Part of the book series: METHODS IN MOLECULAR BIOLOGY™ ((MIMB,volume 497))

Abstract

Post-translational modification by the small ubiquitin-like modifier (SUMO) family of proteins is an important cellular regulatory mechanism, and in recent years has been found to be involved in a large and diverse set of signaling pathways. Most of these SUMO-dependent functions appear to be mediated by the interaction between SUMO attached to the modified proteins and a “SUMO-binding motif” (SBM or SIM) on receptor proteins. Nuclear magnetic resonance (NMR) studies were instrumental in the identification of this SUMO-binding motif, and reveal that, depending on the sequence context, this motif can bind to SUMO in two opposing orientations. In this paper, we provide an overview of how NMR methods can be used to identify such short conserved binding motifs and structurally characterize their interaction with target proteins. These experiments are complementary to traditional biochemical methods and are applicable to the identification of other SUMO-binding motifs and to the studies of other ubiquitin-like modification systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hay, R. T. (2005) SUMO: a history of modification. Mol. Cell 18, 1–12.

    Article  PubMed  CAS  Google Scholar 

  2. Johnson, E. S. (2004) Protein modification by SUMO. Annu. Rev. Biochem. 73, 355–382.

    Article  PubMed  CAS  Google Scholar 

  3. Seeler, J. S., and Dejean, A. (2003) Nuclear and unclear functions of SUMO. Nat. Rev. Mol. Cell. Biol. 4, 690–699.

    Article  PubMed  CAS  Google Scholar 

  4. Matunis, M. J., Wu, J., and Blobel, G. (1998) SUMO-1 modification and its role in targeting the Ran GTPase-activating protein, RanGAP1, to the nuclear pore complex. J. Cell Biol. 140, 499–509.

    Article  PubMed  CAS  Google Scholar 

  5. Mahajan, R., Delphin, C., Guan, T., Gerace, L., and Melchior, F. (1997) A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88, 97–107.

    Article  PubMed  CAS  Google Scholar 

  6. Girdwood, D., Bumpass, D., Vaughan, O. A., Thain, A., Anderson, L. A., Snowden, A. W., Garcia-Wilson, E., Perkins, N. D., and Hay, R. T. (2003) P300 transcriptional repression is mediated by SUMO modification. Mol. Cell 11, 1043–1054.

    Article  PubMed  CAS  Google Scholar 

  7. Yang, S. H., and Sharrocks, A. D. (2004) SUMO promotes HDAC-mediated transcriptional repression. Mol. Cell 13, 611–617.

    Article  PubMed  CAS  Google Scholar 

  8. Bernier-Villamor, V., Sampson, D. A., Matunis, M. J., and Lima, C. D. (2002) Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1. Cell 108, 345–356.

    Article  PubMed  CAS  Google Scholar 

  9. Rodriguez, M. S., Desterro, J. M., Lain, S., Midgley, C. A., Lane, D. P., and Hay, R. T. (1999) SUMO-1 modification activates the transcriptional response of p53. EMBO J. 18, 6455–6461.

    Article  PubMed  CAS  Google Scholar 

  10. Lin, D., Tatham, M. H., Yu, B., Kim, S., Hay, R. T., and Chen, Y. (2002) Identification of a substrate recognition site on Ubc9. J. Biol. Chem. 277, 21740–21748.

    Article  PubMed  CAS  Google Scholar 

  11. Song, J., Durrin, L. K., Wilkinson, T. A., Krontiris, T. G., and Chen, Y. (2004) Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc. Natl. Acad. Sci. USA 101, 14373–14378.

    Article  PubMed  CAS  Google Scholar 

  12. Song, J., Zhang, Z., Hu, W., and Chen, Y. (2005) Small ubiquitin-like modifier (SUMO) recognition of a SUMO binding motif: a reversal of the bound orientation. J. Biol. Chem. 280, 40122–40129.

    Article  PubMed  CAS  Google Scholar 

  13. Shen, T. H., Lin, H. K., Scaglioni, P. P., Yung, T. M., and Pandolfi, P. P. (2006) The mechanisms of PML-nuclear body formation. Mol. Cell 24, 331–339.

    Article  PubMed  CAS  Google Scholar 

  14. Yang, S. H., and Sharrocks, A. D. (2005) PIASx acts as an Elk-1 coactivator by facilitating derepression. EMBO J. 24, 2161–2171.

    Article  PubMed  CAS  Google Scholar 

  15. Chupreta, S., Holmstrom, S., Subramanian, L., and Iniguez-Lluhi, J. A. (2005) A small conserved surface in SUMO is the critical structural determinant of its transcriptional inhibitory properties. Mol. Cell. Biol. 25, 4272–4282.

    Article  PubMed  CAS  Google Scholar 

  16. Tatham, M. H., Kim, S., Jaffray, E., Song, J., Chen, Y., and Hay, R. T. (2005) Unique binding interactions among Ubc9, SUMO and RanBP2 reveal a mechanism for SUMO paralog selection. Nat. Struct. Mol. Biol. 12, 67–74.

    Article  PubMed  CAS  Google Scholar 

  17. Baba, D., Maita, N., Jee, J. G., Uchimura, Y., Saitoh, H., Sugasawa, K., Hanaoka, F., Tochio, H., Hiroaki, H., and Shirakawa, M. (2005) Crystal structure of thymine DNA glycosylase conjugated to SUMO-1. Nature 435, 979–982.

    Article  PubMed  CAS  Google Scholar 

  18. Izumiya, Y., Ellison, T. J., Yeh, E. T. H., Jung, J. U., Luciw, P. A., and Kung, H. J. (2005) Kaposi's sarcoma-associated her-pesvirus K-bZIP represses gene transcription via SUMO modification. J. Virol. 79, 9912–9925.

    Article  PubMed  CAS  Google Scholar 

  19. Takahashi, Y., and Kikuchi, Y. (2005) Yeast PIAS-type Ull1/Siz1 is composed of SUMO ligase and regulatory domains. J. Biol. Chem. 280, 35822–35828.

    Article  PubMed  CAS  Google Scholar 

  20. Nguyen, H. V., Chen, J. L., Zhong, J., Kim, K. J., Crandall, E. D., Borok, Z., Chen, Y., and Ann, D. K. (2006) SUMOylation attenuates sensitivity toward hypoxia- or desferroxamine-induced injury by modulating adaptive responses in salivary epithelial cells. Am. J. Path. 168, 1452–1463.

    Article  PubMed  CAS  Google Scholar 

  21. Cheng, C. H., Lo, Y. H., Liang, S. S., Ti, S. C., Lin, F. M., Yeh, C. H., Huang, H. Y., and Wang, T. F. (2006) SUMO modifications control assembly of synaptonemal complex and polycomplex in meiosis of Saccharomyces cerevisiae. Genes Dev. 20, 2067–2081.

    Article  PubMed  CAS  Google Scholar 

  22. Uchimura, Y., Ichimura, T., Uwada, J., Tachibana, T., Sugahara, S., Nakao, M., and Saitoh, H. (2006) Involvement of SUMO modification in MBD1- and MCAF1-mediated heterochromatin formation. J. Biol. Chem. 281, 23180–23190.

    Article  PubMed  CAS  Google Scholar 

  23. Raffa, G. D., Wohlschlegel, J., Yates, J. R., and Boddy, M. N. (2006) UMO-binding motifs mediate the Rad60-dependent response to replicative stress and self-association. J. Biol. Chem. 281, 27973–27981.

    Article  PubMed  CAS  Google Scholar 

  24. Mukhopadhyay, D., Ayaydin, F., Kolli, N., Tan, S. H., Anan, T., Kametaka, A., Azuma, Y., Wilkinson, K. D., and Dasso, M. (2006) SUSP1 antagonizes formation of highly SUMO2/3-conjugated species. J. Cell Biol. 174, 939–949.

    Article  PubMed  CAS  Google Scholar 

  25. Lin, D. Y., Huang, Y. S., Jeng, J. C., Kuo, H. Y., Chang, C. C., Chao, T. T., Ho, C. C., Chen, Y. C., Lin, T. P., Fang, H. I., Hung, C. C., Suen, C. S., Hwang, M. J., Chang, K. S., Maul, G. G., and Shih, H. M. (2006) Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors. Mol. Cell 24, 341–354.

    Article  PubMed  CAS  Google Scholar 

  26. Mohan, R. D., Rao, A., Gagliardi, J., and Tini, M. (2007) SUMO-1-dependent allosteric regulation of thymine DNA glycosylase alters subnuclear localization and CBP/p300 recruitment. Mol. Cell. Biol. 27, 229–243.

    Article  PubMed  CAS  Google Scholar 

  27. Lee, Y. K., Thomas, S. N., Yang, A. J., and Ann, D. K. (2007) Doxorubicin down-regulates Kruppel-associated box domain-associated protein 1 sumoylation that relieves its transcription repression on p21WAF1/ CIP1 in breast cancer MCF-7 cells. J. Biol. Chem. 282, 1595–1606.

    Article  PubMed  CAS  Google Scholar 

  28. Benson, M. D., Li, Q. J., Kieckhafer, K., Dudek, D., Whorton, M. R., Sunahara, R. K., Iniguez-Lluhi, J. A., and Martens, J. R. (2007) SUMO modification regulates inactivation of the voltage-gated potassium channel Kv1.5. Proc. Natl. Acad. Sci. USA 104, 1805–1810.

    Article  PubMed  CAS  Google Scholar 

  29. Kumar, A., Srivastava, S., and Hosur, R. V. (2007) NMR characterization of the energy landscape of SUMO-1 in the native-state ensemble. J. Mol. Biol. 367, 1480–1493.

    Article  PubMed  CAS  Google Scholar 

  30. Lian, L.-Y. (1993) Effects of chemical exchange on NMR spectro. NMR of Macromolecules: A Practical Approach, Roberts, G., Ed., pp. 164–166, Oxford University Press, New York.

    Google Scholar 

  31. Wuthrich, K. (1986) NMR of Proteins and Nucleic Acids John Wiley and Sons.

    Google Scholar 

  32. Fukui, L., and Chen, Y. (2007) NvMap: automated analysis of NMR chemical shift perturbation data. Bioinformatics 23, 378–380.

    Article  PubMed  CAS  Google Scholar 

  33. Clore, G. M., and Gronenborn, A. M. (1991) Structures of larger proteins in solution: three- and four-dimensional het-eronuclear NMR spectroscopy. Science 252, 1390–1399.

    Article  PubMed  CAS  Google Scholar 

  34. Driscoll, P. C., Gronenborn, A. M., Wing-field, P. T., and Clore, G. M. (1990) Determination of the secondary structure and molecular topology of interleukin-1 beta by use of two- and three-dimensional heteronuclear 15N-1H NMR spectroscopy. Biochemistry 29, 4668–4682.

    Article  PubMed  CAS  Google Scholar 

  35. Marion, D., Driscoll, P. C., Kay, L. E., Wingfield, P. T., Bax, A., Gronenborn, A. M., and Clore, G. M. (1989) Overcoming the overlap problem in the assignment of 1H NMR spectra of larger proteins by use of three-dimensional heteronuclear 1H-15N Hartmann-Hahn-multiple quantum coherence and nuclear Overhauser-multiple quantum coherence spectroscopy: application to interleukin 1 beta. Biochemistry 28, 6150–6156.

    Article  PubMed  CAS  Google Scholar 

  36. Oschkinat, H., Griesinger, C., Kraulis, P. J., Sorensen, O. W., Ernst, R. R., Gronenborn, A. M., and Clore, G. M. (1988) Three-dimensional NMR spectroscopy of a protein in solution. Nature 332, 374–376.

    Article  PubMed  CAS  Google Scholar 

  37. Dominguez, C., Boelens, R., and Bonvin, A. M. (2003) HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J. Am. Chem. Soc. 125, 1731–1737.

    Article  PubMed  CAS  Google Scholar 

  38. Wishart, D. S., Sykes, B. D., and Richards, F. M. (1991) Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. J. Mol. Biol. 222, 311–333.

    Article  PubMed  CAS  Google Scholar 

  39. Cornilescu, G., Delaglio, F., and Bax, A. (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR 13, 289–302.

    Article  PubMed  CAS  Google Scholar 

  40. Karplus, M. (1959) Contact electron-spin interactions of nuclear magnetic moments. J. Chem. Phys. 30, 11–15.

    Article  CAS  Google Scholar 

  41. Karplus, M. (1963) Vicinal Proton Coupling in NMR. J. Am. Chem. Soc. 85, 2870–2871.

    Article  CAS  Google Scholar 

  42. Bax, A., Kontaxis, G., and Tjandra, N. (2001) Dipolar couplings in macromolecular structure determination. Methods Enzymol. 339, 127–174.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants GM074748 and CA94595.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Seu, C.S., Chen, Y. (2009). Identification of SUMO-Binding Motifs by NMR. In: Ulrich, H.D. (eds) SUMO Protocols. METHODS IN MOLECULAR BIOLOGY™, vol 497. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-566-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-566-4_8

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-934115-80-0

  • Online ISBN: 978-1-59745-566-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics