Skip to main content

SUMO Fusion Technology for Enhanced Protein Production in Prokaryotic and Eukaryotic Expression Systems

  • Protocol
SUMO Protocols

Part of the book series: METHODS IN MOLECULAR BIOLOGY™ ((MIMB,volume 497))

Abstract

In eukaryotic cells, the reversible attachment of small ubiquitin-like modifi er (SUMO) protein is a post-translational modifi cation that has been demonstrated to play an important role in various cellular processes. Moreover, it has been found that SUMO as an N-terminal fusion partner enhances functional protein production in prokaryotic and eukaryotic expression systems, based upon significantly improved protein stability and solubility. Following the expression and purification of the fusion protein, the SUMO-tag can be cleaved by specific (SUMO) proteases via their endopeptidase activity in vitro to generate the desired N-terminus of the released protein partner. In addition to its physiological relevance in eukaryotes, SUMO can, thus, be used as a powerful biotechnological tool for protein expression in prokaryotic and eukaryotic cell systems.

In this chapter, we will describe the construction of a fusion protein with the SUMO-tag, its expression in Escherichia coli, and its purification followed by the removal of the SUMO-tag by a SUMO-specific protease in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seeler, J. S., Bischof, O., Nacerddine, K., and Dejean, A. (2007) SUMO, the three Rs and cancer. Curr. Top. Microbiol. Immunol. 313, 49–71.

    Article  PubMed  CAS  Google Scholar 

  2. Meinecke, I., Cinski, A., Baier, A., Peters, M. A., Dankbar, B., Wille, A., Drynda, A., Mendoza, H., Gay, R. E., Hay, R. T., Ink, B., Gay, S., and Pap, T. (2007) Modification of nuclear PML protein by SUMO-1 regulates Fas-induced apoptosis in rheumatoid arthritis synovial fibroblasts. Proc. Natl. Acad. Sci. USA 104, 5073–5078.

    Article  PubMed  CAS  Google Scholar 

  3. Rajan, S., Plant, L. D., Rabin, M. L., Butler, M. H., and Goldstein, S. A. (2005) Sumoylation silences the plasma membrane leak K+ channel K2P1. Cell 121, 37–47.

    Article  PubMed  CAS  Google Scholar 

  4. Martin, S., Nishimune, A., Mellor, J. R., and Henley, J. M. (2007) SUMOylation regulates kainate-receptor-mediated synap-tic transmission. Nature 447, 321–325.

    Article  PubMed  CAS  Google Scholar 

  5. Mabb, A. M., Wuerzberger-Davis, S. M., and Miyamoto, S. (2006) PIASy mediates NEMO sumoylation and NF-kappaB activation in response to genotoxic stress. Nat. Cell Biol. 8, 986–993.

    Article  PubMed  CAS  Google Scholar 

  6. Li, S. J. and Hochstrasser, M. (1999) A new protease required for cell-cycle progression in yeast. Nature 398, 246–251.

    Article  PubMed  CAS  Google Scholar 

  7. Malakhov, M. P., Mattern, M. R., Mala-khova, O. A., Drinker, M., Weeks, S. D., and Butt, T. R. (2004) SUMO fusions and SUMO-specific protease for efficient expression and purification of proteins. J. Struct. Funct. Genomics 5, 75–86.

    Article  PubMed  CAS  Google Scholar 

  8. Marblestone, J. G., Edavettal, S. C., Lim, Y., Lim, P., Zuo, X., and Butt, T. R. (2006) Comparison of SUMO fusion technology with traditional gene fusion systems: enhanced expression and solubility with SUMO. Protein Sci. 15, 182–189.

    Article  PubMed  CAS  Google Scholar 

  9. Butt, T. R., Edavettal, S. C., Hall, J. P., and Mattern, M. R. (2005) SUMO fusion technology for difficult-to-express proteins. Protein Expr. Purif. 43, 1–9.

    Article  PubMed  CAS  Google Scholar 

  10. Zuo, X., Mattern, M. R., Tan, R., Li, S., Hall, J., Sterner, D. E., Shoo, J., Tran, H., Lim, P., Sarafianos, S. G., Kazi, L., Navas-Martin, S., Weiss, S. R., and Butt, T. R. (2005) Enhanced expression and purification of membrane proteins by SUMO fusion in Escherichia coli. J. Struct. Funct. Genomics 6, 103–111.

    Article  PubMed  CAS  Google Scholar 

  11. Zuo, X., Mattern, M. R., Tan, R., Li, S., Hall, J., Sterner, D. E., Shoo, J., Tran, H., Lim, P., Sarafianos, S. G., Kazi, L., Navas-Martin, S., Weiss, S. R., and Butt, T. R. (2005) Expression and purification of SARS coronavirus proteins using SUMO-fusions. Protein Expr. Purif. 42, 100–110.

    Article  PubMed  CAS  Google Scholar 

  12. Guzzo, C. M. and Yang, D. C. (2007) Systematic analysis of fusion and affinity tags using human aspartyl-tRNA synthetase expressed in E. coli. Protein Expr. Purif. 54, 166–175.

    Article  PubMed  CAS  Google Scholar 

  13. Dominy, J. E., Jr., Simmons, C. R., Hirsch-berger, L. L., Hwang, J., Coloso, R. M., and Stipanuk, M. H. (2007) Discovery and characterization of a second mammalian thiol dioxygenase, cysteamine dioxygenase. J. Biol. Chem. 282, 25189–25198.

    Article  PubMed  CAS  Google Scholar 

  14. Hughes, R. S., Dowd, P. F., Hector, R. E., Riedmuller, S. B., Bartolett, S., Mertens, J. A., Qureshi, N., Liu, S., Bischoff, K. M., Li, X., Jackson Jr., J. S., Sterner, D., Panavas, T., Rich, J. O., Farrelly, P. J., Butt, T., and Cotta, M. A. (2007) Cost-Effective High-Throughput Fully Automated Construction of a Multiplex Library of Mutagenized Open Reading Frames for an Insecticidal Peptide Using a Plasmid-Based Functional Proteomic Robotic Workcell with Improved Vacuum System. J. Assoc. Lab. Autom. 12, 202–212.

    Article  CAS  Google Scholar 

  15. Peroutka, R., Elshourbagy, J., N., Piech, T., and Butt, T.R. (2008) Enhanced protein expression in mammalian cells using engineered SUMO fusion: Secreted Phospholi-pase A2. Protein Sci. 17, 1586–1595.

    Article  PubMed  CAS  Google Scholar 

  16. Liu, L., Spurrier, J., Butt, T. R., Strickler, J.E. (2008) Enhanced protein expression in the baculovirus/insect cell system using engineered SUMO fusions. Protein Expr. Purif. Epub ahead of print 5 Aug 2008.

    Google Scholar 

  17. Mossessova, E., and Lima, C. D. (2000) Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Mol. Cell 5, 865–876.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Panavas, T., Sanders, C., Butt, T.R. (2009). SUMO Fusion Technology for Enhanced Protein Production in Prokaryotic and Eukaryotic Expression Systems. In: Ulrich, H.D. (eds) SUMO Protocols. METHODS IN MOLECULAR BIOLOGY™, vol 497. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-566-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-566-4_20

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-934115-80-0

  • Online ISBN: 978-1-59745-566-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics