Advertisement

Identifying Transcriptional Regulatory Regions Using Reporter Genes and DNA—Protein Interactions by Chromatin Immunoprecipitation

  • Lezanne Ooi
  • Ian C. Wood
Part of the Methods in Molecular Biology book series (MIMB, volume 491)

Summary

A comprehensive understanding of regulatory protein interactions with their target genes is fundamental to determining transcriptional networks and identifying important events in the regulation of gene expression. Here we describe how transcriptional regulatory regions are to be identified using luciferase assays (including the transfection of cells by Amaxa and lipid-based reagents) and how protein—DNA interactions are to be characterised by chromatin immunoprecipitation (ChIP) coupled with quantitative PCR. Together these techniques provide a powerful combination for investigating potassium channel gene regulation.

Key words:

Electroporation Transient transfection Luciferase assays Chromatin immunoprecipitation Quantitative PCR 

Notes

Acknowledgments

This work was supported by the British Heart Foundation and the Wellcome Trust.

References

  1. 1.
    Ghanshani, S., Wulff, H., Miller, M. J., Rohm, H., Neben, A., Gutman, G. A., Cahalan, M. D., and Chandy, K. G. (2000) Up-regulation of the IKCa1 potassium channel during T-cell activation. J Biol Chem 275,37137–37149.CrossRefPubMedGoogle Scholar
  2. 2.
    Kohler, R., Wulff, H., Eichler, I., Kneifel, M., Neumann, D., Knorr, A., Grgic, I., Kampfe, D., Si, H., Wibawa, J., Real, R., Borner, K., Brakemeier, S., Orzechowski, H.-D., Reusch, H.-P., Paul, M., Chandy, K. G., and Hoyer, J. (2003) Blockade of the intermediate-conductance calcium-activated potassium channel as a new therapeutic strategy for restenosis. Circulation 108,1119–1125.CrossRefPubMedGoogle Scholar
  3. 3.
    Cheong, A., Bingham, A. J., Li, J., Kumar, B., Sukumar, P., Munsch, C., Buckley, N.J., Neylon, C. B., Porter, K. E., Beech, D.J., and Wood, I. C. (2005) Downregulated REST transcription factor is a switch enabling critical potassium channel expression and cell proliferation. Mol Cell 20, 45–52.CrossRefPubMedGoogle Scholar
  4. 4.
    Fountain, S. J., Cheong, A., Li, J., Dondas, N. Y., Zeng, F., Wood, I. C., and Beech, D. J. (2007) Kv1.5 potassium channel gene regulation by Sp1 transcription factor and oxidative stress. Am J Physiol Heart Circ Physiol 293, H2719–H2725.CrossRefPubMedGoogle Scholar
  5. 5.
    Gan, L., Hahn, S. J., and Kaczmarek, L. K. (1999) Cell type-specific expression of the Kv3.1 gene is mediated by a negative element in the 5′ untranslated region of the Kv3.1 promoter. J Neurochem 73, 1350–1362.CrossRefPubMedGoogle Scholar
  6. 6.
    Costantini, D. L., Arruda, E. P., Agarwal, P., Kim, K.-H., Zhu, Y., Zhu, W., Lebel, M., Cheng, C. W., Park, C. Y., Pierce, S. A., Guerchicoff, A., Pollevick, G. D., Chan, T. Y., Kabir, M. G., Cheng, S. H., Husain, M., Antzelevitch, C., Srivastava, D., Gross, G. J., Hui, C.-c., Backx, P. H., and Bruneau, B. G. (2005) The homeodomain transcription factor Irx5 establishes the mouse cardiac ventricular repolarization gradient. Cell 123, 347.CrossRefPubMedGoogle Scholar
  7. 7.
    Gong, N., Bodi, I., Zobel, C., Schwartz, A., Molkentin, J. D., and Backx, P. H. (2006) Calcineurin increases cardiac transient outward K+ currents via transcriptional up-regulation of Kv4.2 channel subunits. J Biol Chem 281, 38498–38506.CrossRefPubMedGoogle Scholar
  8. 8.
    Kuo, M.-H., and Allis, C. D. (1999) In vivo cross-linking and immunoprecipitation for studying dynamic protein:DNA associations in a chromatin environment. Methods 19, 425–433.CrossRefPubMedGoogle Scholar
  9. 9.
    Ooi, L., Belyaev, N. D., Miyake, K., Wood, I. C., and Buckley, N. J. (2006) BRG1 chromatin remodeling activity is required for efficient chromatin binding by the transcriptional repressor rest and facilitates rest-mediated repression. J Biol Chem. 281,38974–38980.CrossRefPubMedGoogle Scholar
  10. 10.
    Wood, I. C., Belyaev, N. D., Bruce, A. W., Jones, C., Mistry, M., Roopra, A., and Buckley, N. J. (2003) Interaction of the repressor element 1-silencing transcription factor (REST)with target genes. J Mol Biol 334, 863–874.CrossRefPubMedGoogle Scholar
  11. 11.
    Belyaev, N. D., Wood, I. C., Bruce, A. W., Street, M., Trinh, J.-B., and Buckley, N. J. (2004) Distinct RE-1 silencing transcription factor-containing complexes interact with different target genes. J Biol Chem 279, 556–561.CrossRefPubMedGoogle Scholar
  12. 12.
    Bruce, A. W., Donaldson, I. J., Wood, I C., Yerbury, S. A., Sadowski, M. I., Chapman, M., Gottgens, B., and Buckley, N. J. (2004) Genome-wide analysis of repressor element 1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) target genes. Proc Natl Acad Sci USA 101,10458–10463.CrossRefPubMedGoogle Scholar
  13. 13.
    Bingham, A. J., Ooi, L., Kozera, L., White, E., and Wood, I. C. (2007) The repressor element 1-silencing transcription factor regulates heart-specific gene expression using multiple chromatin-modifying complexes.Mol Cell Biol 27, 4082–4092.CrossRefPubMedGoogle Scholar
  14. 14.
    Zuccato, C., Belyaev, N., Conforti, P., Ooi, L., Tartari, M., Papadimou, E., MacDon-ald, M., Fossale, E., Zeitlin, S., Buckley, N., and Cattaneo, E. (2007) Widespread disruption of repressor element-1 silencing transcription factor/neuron-restrictive silencer factor occupancy at its target genes in Huntington's disease. J Neurosci 27,6972–6983.CrossRefPubMedGoogle Scholar
  15. 15.
    Ooi, L. and Wood, I. C. (2007) Chromatin crosstalk in development and disease: lessons from REST. Nat Rev Genet 8, 544–554.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Lezanne Ooi
    • 1
  • Ian C. Wood
    • 1
  1. 1.Institute of Membrane and Systems BiologyUniversity of LeedsLeedsUK

Personalised recommendations