Skip to main content

Fluorescence Microscopy Methods in the Study of Protein Structure and Function

  • Protocol
Auditory and Vestibular Research

As more and more proteins specific to hair cells are discovered, it becomes imperative to understand their structure and how that contributes to their function. The fluorescence microscopic methods described here can be employed to provide information on protein-protein interactions, whether homomeric or heteromeric, and on protein conformation. Here, we describe two fluorescence microscopic methodologies applied to the outer hair cell-specific membrane protein prestin: the intensity and fluorescence lifetime (FLIM) variants of FRET (Fluorescence Resonance Energy Transfer), used in the study of protein-protein interactions, and the Scanning Cysteine Accessibility Method (SCAM), used for the determination of protein conformation. The methods are readily adaptable to other proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steel, K. P. and Kros, C. J. (2001) A genetic approach to understanding auditory function. Nat. Genet. 27, 143–9.

    Article  CAS  PubMed  Google Scholar 

  2. Frolenkov, G. I., Belyantseva, I. A., Friedman, T. B., and Griffith, A. J. (2004) Genetic insights into the morphogenesis of inner ear hair cells. Nat. Rev. Genet. 5, 489–98.

    Article  CAS  PubMed  Google Scholar 

  3. Bork, J. M., Peters, L. M., Riazuddin, S., Bernstein, S. L., Ahmed, Z. M., et al. Usher syndrome 1D and nonsyndromic autosomal recessive deafness DFNB12 are caused by allelic mutations of the novel cadherin-like gene CDH23. (2001) Am. J. Hum. Genet. 68, 26–37.

    Article  CAS  PubMed  Google Scholar 

  4. Zheng, J., Shen, W., He, D. Z., Long, K. B., Madison, L. D., and Dallos, P. (2000) Prestin is the motor protein of cochlear outer hair cells. Nature 405, 149–55.

    Article  CAS  PubMed  Google Scholar 

  5. Zheng, J., Madison, L. D., Oliver, D., Fakler, B., and Dallos, P. (2002) Prestin, the motor protein of outer hair cells. Audiol. Neurootol. 7, 9–12.

    Article  CAS  PubMed  Google Scholar 

  6. Gordon, G. W., Berry, G., Liang, X. H., Levine, B., and Herman, B. (1998) Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys. J. 74, 2702–13.

    Article  CAS  PubMed  Google Scholar 

  7. Pollok, B. A. and Heim, R. (1999) Using GFP in FRET-based applications. Trends Cell Biol. 9, 57–60.

    Article  CAS  PubMed  Google Scholar 

  8. Wu, X., Currall, B., Yamashita, T., Parker, L. L., Hallworth, R., and Zuo, J. Prestin-prestin and prestin-GLUT5 interactions in HEK293T cells. (2007) Dev. Neurobiol. 67, 483–97.

    Article  CAS  PubMed  Google Scholar 

  9. Hallworth, R., Currall, B., Nichols, M. G., Wu, X., and Zuo, J. (2006) Studying inner ear protein-protein interactions using FRET and FLIM. Brain Res. 1091, 122–31.

    Article  CAS  PubMed  Google Scholar 

  10. Dickinson, M. E., Bearman, G., Tille, S., Lansford, R., and Fraser, S. E. (2001) Multi-spectral imaging and linear unmixing add a whole new dimension to laser scanning fluorescence microscopy. Biotechniques 31, 1272, 74–6, 78.

    Google Scholar 

  11. Chen, Y. and Periasamy, A. (2004) Characterization of two-photon excitation fluorescence lifetime imaging microscopy for protein localization. Microsc. Res. Tech. 63, 72–80.

    Article  CAS  PubMed  Google Scholar 

  12. Elangovan, M., Wallrabe, H., Chen, Y., Day, R. N., Barroso, M., and Periasamy, A. (2003) Characterization of one- and two-photon excitation fluorescence resonance energy transfer microscopy. Methods 29, 58–73.

    Article  CAS  PubMed  Google Scholar 

  13. Murata, S., Herman, P., and Lakowicz, J. R. (2001) Texture analysis of fluorescence lifetime images of AT- and GC-rich regions in nuclei. J. Histochem. Cytochem. 49, 1443–51.

    CAS  PubMed  Google Scholar 

  14. Karpova, T. S., Baumann, C. T., He, L., Wu, X., Grammer, A., Lipsky, P., et al. (2003) Fluorescence resonance energy transfer from cyan to yellow fluorescent protein detected by acceptor photobleaching using confocal microscopy and a single laser. J. Microsc. 209, 56–70.

    Article  CAS  PubMed  Google Scholar 

  15. Navaratnam, D., Bai, J. P., Samaranayake, H., and Santos-Sacchi, J. (2005) N-terminal-mediated homomultimerization of prestin, the outer hair cell motor protein. Biophys. J. 89, 3345–52.

    Article  CAS  PubMed  Google Scholar 

  16. Deak, L., Zheng, J., Orem, A., Du, G. G., Aguinaga, S., Matsuda, K., and Dallos, P. (2005) Effects of cyclic nucleotides on the function of prestin. J. Physiol. 563, 483–96.

    Article  CAS  PubMed  Google Scholar 

  17. Zhu, Q. and Casey, J. R. (2007) Topology of transmembrane proteins by scanning cysteine accessibility mutagenesis methodology. Methods 41, 439–50.

    Article  CAS  PubMed  Google Scholar 

  18. Rizzo, M. A., Springer, G. H., Granada, B., and Piston, D. W. (2004) An improved cyan fluorescent protein variant useful for FRET. Nat. Biotechnol. 22, 445–9.

    Article  CAS  PubMed  Google Scholar 

  19. Nagai, T., Ibata, K., Park, E. S., Kubota, M., Mikoshiba, K., and Miyawaki, A. (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 20, 87–90.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Supported by DC 02053 (to RH), RR17417-01 (to Creighton University), and NSF-EPSCoR EPS-0346476 (to RH).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Jensen-Smith, H., Currall, B., Rossino, D., Tiede, L., Nichols, M., Hallworth, R. (2009). Fluorescence Microscopy Methods in the Study of Protein Structure and Function. In: Sokolowski, B. (eds) Auditory and Vestibular Research. Methods in Molecular Biology™, vol 493. Humana Press. https://doi.org/10.1007/978-1-59745-523-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-523-7_22

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-62-6

  • Online ISBN: 978-1-59745-523-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics