Skip to main content

Domain Team

Synteny of Domains is a New Approach in Comparative Genomics

  • Protocol
Comparative Genomics

Part of the book series: Methods In Molecular Biology™ ((MIMB,volume 396))

Summary

We present here a method to identify microsyntenies across several genomes. This method adopts the innovative approach of deconstructing proteins into their domains. This allows the detection of strings of domains that are conserved in their content, but not necessarily in their order, that we refer to as domain teams or syntenies of domains. The prominent feature of the method is that it relaxes the rigidity of the orthology criterion and avoids many of the pitfalls of gene families identification methods, often hampered by multidomain proteins or low levels of sequence similarity. This approach, that allows both inter- and intrachromosomal comparisons, proves to be more sensitive than the classical methods based on pairwise sequence comparisons, particularly in the simultaneous treatment of many species. The automated and fast detection of domain teams is implemented in the DomainTeam software. In this chapter, we describe the procedure to run DomainTeam. After formatting the input and setting up the parameters, running the algorithm produces an output file comprising all the syntenies of domains shared by two or more (sometimes all) of the compared genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bergeron, A., Corteel, S., and Raffinot, M. (2002) The algorithmic of gene teams. Lecture Notes Comput. Sci. 2452, 464–476.

    Article  Google Scholar 

  2. Luc, N., Risler, J. -L., Bergeron, A., and Raffinot, M. (2003) Gene teams: a new formalization of gene clusters for comparative genomics. Comput. Biol. Chem. 27, 59–67.

    Article  CAS  PubMed  Google Scholar 

  3. von Mering, C., Huynen, M., Jaeggi, D., Schmidt, S., Bork, P., and Snel, B. (2003) STRING: a database of predicted functional associations between proteins. Nucleic Acids Res. 31, 258–261.

    Article  Google Scholar 

  4. Overbeek, R., Fonstein, M., D’Souza, M., Pusch, G. D., and Maltsev, N. (1999) The use of gene clusters to infer functional coupling. Proc. Natl. Acad. Sci. 96, 2896–2901.

    Google Scholar 

  5. Sali, A. (1999) Functional links between proteins. Nature 402, 23–26.

    Article  CAS  PubMed  Google Scholar 

  6. Marcotte, E. M., Pellegrini, M., Thompson, M. J., Yeates, T. O., and Eisenberg, D. (1999) A combined algorithm for genome-wide prediction of protein function. Nature 402, 83–86.

    Article  CAS  PubMed  Google Scholar 

  7. Galperin, M. Y. and Koonin, E. V. (2000) Who’s your neighbor? New computational approaches for functional genomics. Nature Biotech. 18, 609–613.

    Article  CAS  Google Scholar 

  8. Suyama, M. and Bork, P. (2001) Evolution of prokaryotic gene order: genome rearrangements in closely related species. Trends Genet. 17, 10–13.

    Article  CAS  PubMed  Google Scholar 

  9. Enright, A. J. and Ouzounis, C. A. (2001) Functional associations of proteins in entire genomes by means of exhaustive detection of gene fusions. Genome Biol. 2, research 0034.1–0034.7.

    Article  Google Scholar 

  10. Suhre, K. and Claverie, J. -M. (2004) FusionDB: a database for in-depth analysis of prokaryotic gene fusion events. Nucleic Acids Res. 32, D273–D276.

    Article  CAS  PubMed  Google Scholar 

  11. Korbel, J. O., Jensen, L. J., von Mering, C., and Bork, P. (2004) Analysis of genomic context: prediction of functional associations from conserved bidirectionally transcribed gene pairs. Nature Biotech. 22, 911–917.

    Article  CAS  Google Scholar 

  12. Tang, J. and Moret, B. M. (2003) Scaling up accurate phylogenetic reconstruction from gene-order data. Bioinformatics 19, i305–i312.

    Article  PubMed  Google Scholar 

  13. Sankoff, D. (2003) Rearrangements and genome evolution. Curr. Opin. Gen. Dev. 13, 583–587.

    Article  CAS  Google Scholar 

  14. Delcher, A. L., Phillippy, A., Carlton, J., and Salzberg, S. L. (2002) Fast algorithms for large-scale genome alignment and comparison. Nucleic Acids Res. 30, 2478–2483.

    Article  PubMed  Google Scholar 

  15. He, X. and Goldwasser, M. H. (2005) Identifying conserved gene clusters in the presence of homology families. J. Comput. Biol. 12, 638–656.

    Article  CAS  PubMed  Google Scholar 

  16. Fujibuchi, W., Ogata, H., Matsuda, H., and Kanehisa, M. (2000) A heuristic graph comparison algorithm and its application to detect functionally related enzyme clusters. Nucleic Acids Res. 28, 4021–4028.

    Article  PubMed  Google Scholar 

  17. Kolesov, G., Mewes, H. W., and Frishman, D. (2001) SNAPping up functionally related genes based on context information: a colinearity-free approach. J. Mol. Biol. 311, 639–656.

    Article  CAS  PubMed  Google Scholar 

  18. Pasek, S., Bergeron, A., Risler, J. -L., Louis, A., Ollivier, E., and Raffinot, M. (2005) Identification of genomic features using microsyntenies of domains: domain teams. Genome Res. 15, 867–874.

    Article  CAS  PubMed  Google Scholar 

  19. Fitch, W. M. (2000) Homology a personal view on some of the problems. Trends Genet. 16, 227–231.

    Article  CAS  PubMed  Google Scholar 

  20. Enright, A. J., Iliopoulos, I., Kyrpides, N. C., and Ouzounis, C. A. (1999) Protein interaction maps for complete genomes based on gene fusion events. Nature 402, 86–90.

    Article  CAS  PubMed  Google Scholar 

  21. Yanai, I., Derti, A., and DeLisi, C. (2001) Genes linked by fusion events are generally of the same functional category: a systematic analysis of 30 microbial genomes. Proc. Natl. Acad. Sci. 98, 7940–7945.

    Article  CAS  PubMed  Google Scholar 

  22. Yanai, I., Wolf, Y. I., and Koonin, E. V. (2002) Evolution of gene fusions: horizontal transfer versus independent events. Genome Biol. 3, research 0024.1–0024.13.

    Google Scholar 

  23. Weiner, J., 3rd, Thomas, G., Bornberg-Bauer, E. (2005) Rapid motif-based prediction of circular permutations in multi-domain proteins. Bioinformatics 21, 932–937.

    Article  CAS  PubMed  Google Scholar 

  24. Bateman, A., Coin, L., Durbin, R., et al. (2004) The Pfam protein families database. Nucleic Acids Res. 32, D138–D141.

    Article  CAS  PubMed  Google Scholar 

  25. Fukuda, Y., Washio, T., and Tomita, M. (1999) Comparative study of overlapping genes in the genomes of Mycoplasma genitalium and Mycoplasma pneumoniae. Nucleic Acids Res. 27, 1847–1853

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Much of this research took place while the author was at the Laboratoire Génome et Informatique. At this time, implementation and data were publicly available on the Infobiogen website http://lgi.infobiogen.fr/DomainTeam whose team provided a substantial help for this. The author is grateful to the members of her present lab, Laboratoire Statistique et Génome, particularly to Mark Hoebeke who performed the migration of the website to http://stat.genopole.cnrs.fr/domainteams.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Pasek, S. (2007). Domain Team. In: Bergman, N.H. (eds) Comparative Genomics. Methods In Molecular Biology™, vol 396. Humana Press. https://doi.org/10.1007/978-1-59745-515-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-515-2_2

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-37-4

  • Online ISBN: 978-1-59745-515-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics