Skip to main content

Model of Acute Injury to Study Neuroprotection

  • Protocol
Neuroprotection Methods and Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 399))

Abstract

A major causative factor in the paralysis that often follows an acute injury to the central nervous system (CNS) is the paradoxical inability of the CNS to tolerate its own mechanism of self-repair. The dismal result is often a wider spread of damage (part of the inevitable “secondary” or “delayed” degeneration) rather than contribution toward a cure. Ever since the phenomenon of posttraumatic damage spread in the CNS was first recognized, neuroscientists have attempted to identify the players in this destructive process and have sought ways to neutralize or bypass them with the object of rescuing any neurons that are still viable. This approach is collectively termed neuroprotection. In this chapter, we present a view of experimental paradigms used to study neuroprotection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schwartz, M., Moalem, G., Leibowitz-Amit, R., and Cohen, I. R. (1999) Innate and adaptive immune responses can be beneficial for CNS repair. Trends Neurosci 22, 295–299.

    Article  CAS  PubMed  Google Scholar 

  2. Villoslada, P., and Genain, C. P. (2004) Role of nerve growth factor and other trophic factors in brain inflammation. Prog Brain Res 146, 403–414.

    Article  CAS  PubMed  Google Scholar 

  3. Pachter, J. S., de Vries, H. E., and Fabry, Z. (2003) The blood-brain barrier and its role in immune privilege in the central nervous system. J Neuropathol Exp Neurol 62, 593–604.

    CAS  PubMed  Google Scholar 

  4. Neumann, H. (2000) The immunological microenvironment in the CNS: implications on neuronal cell death and survival. J Neural Transm Suppl 59, 59–68.

    CAS  PubMed  Google Scholar 

  5. Hailer, N. P., Heppner, F. L., Haas, D., and Nitsch, R. (1998) Astrocytic factors deactivate antigen presenting cells that invade the central nervous system. Brain Pathol 8, 459–474.

    Article  CAS  PubMed  Google Scholar 

  6. Hatterer, E., Davoust, N., Didier-Bazes, M., Vuaillat, C., Malcus, C., Belin, M. F., and Nataf, S. (2006) How to drain without lymphatics? Dendritic cells migrate from the cerebrospinal fluid to the B-cell follicles of cervical lymph nodes. Blood 107, 806–812.

    Article  CAS  PubMed  Google Scholar 

  7. Lotan, M., and Schwartz, M. (1994) Cross talk between the immune system and the nervous system in response to injury: implications for regeneration. FASEB J 8, 1026–1033.

    CAS  PubMed  Google Scholar 

  8. Lotan, M., Solomon, A., Ben-Bassat, S., and Schwartz, M. (1994) Cytokines modulate the inflammatory response and change permissiveness to neuronal adhesion in injured mammalian central nervous system. Exp Neurol 126, 284–290.

    Article  CAS  PubMed  Google Scholar 

  9. Broadwell, R. D., Charlton, H. M., Ebert, P., Hickey, W. F., Villegas, J. C., and Wolf, A. L. (1990) Angiogenesis and the blood-brain barrier in solid and dissociated cell grafts within the CNS. Prog Brain Res 82, 95–101.

    Article  CAS  PubMed  Google Scholar 

  10. Broadwell, R. D., Baker, B. J., Ebert, P. S., and Hickey, W. F. (1994) Allografts of CNS tissue possess a blood-brain barrier: III. Neuropathological, methodological, and immunological considerations. Microsc Res Tech 27, 471–494.

    Article  CAS  PubMed  Google Scholar 

  11. Cserr, H. F., Harling-Berg, C. J., and Knopf, P. M. (1992) Drainage of brain extracellular fluid into blood and deep cervical lymph and its immunological significance. Brain Pathol 2, 269–276.

    Article  CAS  PubMed  Google Scholar 

  12. Cserr, H. F., and Knopf, P. M. (1992) Cervical lymphatics, the blood-brain barrier and the immunoreactivity of the brain: a new view. Immunol Today 13, 507–512.

    Article  CAS  PubMed  Google Scholar 

  13. Flugel, A., Berkowicz, T., Ritter, T., Labeur, M., Jenne, D. E., Li, Z., Ellwart, J. W., Willem, M., Lassmann, H., and Wekerle, H. (2001) Migratory activity and functional changes of green fluorescent effector cells before and during experimental autoimmune encephalomyelitis. Immunity 14, 547–560.

    Article  CAS  PubMed  Google Scholar 

  14. Hickey, W. F. (1999) Leukocyte traffic in the central nervous system: the participants and their roles. Semin Immunol 11, 125–137.

    Article  CAS  PubMed  Google Scholar 

  15. Griffin, D., Levine, B., Tyor, W., Ubol, S., and Despres, P. (1997) The role of antibody in recovery from alphavirus encephalitis. Immunol Rev 159, 155–161.

    Article  CAS  PubMed  Google Scholar 

  16. Griffin, D. E., and Hardwick, J. M. (1997) Regulators of apoptosis on the road to persistent alphavirus infection. Annu Rev Microbiol 51, 565–592.

    Article  CAS  PubMed  Google Scholar 

  17. Czech, K. A., Ryan, J. W., Sagen, J., and Pappas, G. D. (1997) The influence of xenotransplant immunogenicity and immunosuppression on host MHC expression in the rat CNS. Exp Neurol 147, 66–83.

    Article  CAS  PubMed  Google Scholar 

  18. Moalem, G., Monsonego, A., Shani, Y., Cohen, I. R., and Schwartz, M. (1999) Differential T cell response in central and peripheral nerve injury: connection with immune privilege. FASEB J 13, 1207–1217.

    CAS  PubMed  Google Scholar 

  19. Yoles, E., and Schwartz, M. (1998) Degeneration of spared axons following partial white matter lesion: implications for optic nerve neuropathies. Exp Neurol 153, 1–7.

    Article  CAS  PubMed  Google Scholar 

  20. Yurkewicz, L., Weaver, J., Bullock, M. R., and Marshall, L. F. (2005) The effect of the selective NMDA receptor antagonist traxoprodil in the treatment of traumatic brain injury. J Neurotrauma 22, 1428–1443.

    Article  PubMed  Google Scholar 

  21. Belli, A., Sen, J., Petzold, A., Russo, S., Kitchen, N., Smith, M., Tavazzi, B., Vagnozzi, R., Signoretti, S., Amorini, A. M., Bellia, F., and Lazzarino, G. (2006) Extracellular N-acetylaspartate depletion in traumatic brain injury. J Neurochem 96, 861–869.

    Article  CAS  PubMed  Google Scholar 

  22. Matute, C., Domercq, M., and Sanchez-Gomez, M. V. (2006) Glutamate-mediated glial injury: mechanisms and clinical importance. Glia 53, 212–224.

    Article  PubMed  Google Scholar 

  23. Xu, G. Y., Hughes, M. G., Zhang, L., Cain, L., and McAdoo, D. J. (2005) Administration of glutamate into the spinal cord at extracellular concentrations reached post-injury causes functional impairments. Neurosci Lett 384, 271–276.

    Article  CAS  PubMed  Google Scholar 

  24. McAdoo, D. J., Hughes, M. G., Nie, L., Shah, B., Clifton, C., Fullwood, S., and Hulsebosch, C. E. (2005) The effect of glutamate receptor blockers on glutamate release following spinal cord injury. Lack of evidence for an ongoing feedback cascade of damage → glutamate release → damage → glutamate release → etc. Brain Res 1038, 92–99.

    Article  CAS  PubMed  Google Scholar 

  25. Parsons, C. G., Danysz, W., and Quack, G. (1998) Glutamate in CNS disorders as a target for drug development: an update. Drug News Perspect 11, 523–569.

    Article  CAS  PubMed  Google Scholar 

  26. Rosin, C., Bates, T. E., and Skaper, S. D. (2004) Excitatory amino acid induced oligodendrocyte cell death in vitro: receptor-dependent and-independent mechanisms. J Neurochem 90, 1173–1185.

    Article  CAS  PubMed  Google Scholar 

  27. Sargsyan, S. A., Monk, P. N., and Shaw, P. J. (2005) Microglia as potential contributors to motor neuron injury in amyotrophic lateral sclerosis. Glia 51, 241–253.

    Article  PubMed  Google Scholar 

  28. Kim, S. U., and de Vellis, J. (2005) Microglia in health and disease. J Neurosci Res 81, 302–313.

    Article  CAS  PubMed  Google Scholar 

  29. Croxford, J. L., and Miller, S. D. (2003) Immunoregulation of a viral model of multiple sclerosis using the synthetic cannabinoid R+WIN55,212. J Clin Invest 111, 1231–1240.

    CAS  PubMed  Google Scholar 

  30. Stieg, P. E., Sathi, S., Warach, S., Le, D. A., and Lipton, S. A. (1999) Neuroprotection by the NMDA receptor-associated open-channel blocker memantine in a photothrombotic model of cerebral focal ischemia in neonatal rat. Eur J Pharmacol 375, 115–120.

    Article  CAS  PubMed  Google Scholar 

  31. Nagafuji, T., Sugiyama, M., Matsui, T., and Koide, T. (1993) A narrow therapeutical window of a nitric oxide synthase inhibitor against transient ischemic brain injury. Eur J Pharmacol 248, 325–328.

    CAS  PubMed  Google Scholar 

  32. Moalem, G., Leibowitz-Amit, R., Yoles, E., Mor, F., Cohen, I. R., and Schwartz, M. (1999) Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat Med 5, 49–55.

    Article  CAS  PubMed  Google Scholar 

  33. Popovich, P. G., Yu, J. Y., and Whitacre, C. C. (1997) Spinal cord neuropathology in rat experimental autoimmune encephalomyelitis: modulation by oral administration of myelin basic protein. J Neuropathol Exp Neurol 56, 1323–1338.

    Article  CAS  PubMed  Google Scholar 

  34. Rapalino, O., Lazarov-Spiegler, O., Agranov, E., Velan, G. J., Yoles, E., Fraidakis, M., Solomon, A., Gepstein, R., Katz, A., Belkin, M., Hadani, M., and Schwartz, M. (1998) Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat Med 4, 814–821.

    Article  CAS  PubMed  Google Scholar 

  35. Assia, E., Rosner, M., Belkin, M., Solomon, A., and Schwartz, M. (1989) Temporal parameters of low energy laser irradiation for optimal delay of post-traumatic degeneration of rat optic nerve. Brain Res 476, 205–212.

    Article  CAS  PubMed  Google Scholar 

  36. Rosner, M., Caplan, M., Cohen, S., Duvdevani, R., Solomon, A., Assia, E., Belkin, M., and Schwartz, M. (1993) Dose and temporal parameters in delaying injured optic nerve degeneration by low-energy laser irradiation. Lasers Surg Med 13, 611–617.

    Article  CAS  PubMed  Google Scholar 

  37. Duvdevani, R., Lavie, V., Segel, L., and Schwartz, M. (1993) A new method for expressing axonal size: rat optic nerve analysis. J Electron Microsc (Tokyo) 42, 412–414.

    CAS  Google Scholar 

  38. Schwartz, M., Belkin, M., Yoles, E., and Solomon, A. (1996) Potential treatment modalities for glaucomatous neuropathy: neuroprotection and neuroregeneration. J Glaucoma 5, 427–432.

    CAS  PubMed  Google Scholar 

  39. Hauben, E., Agranov, E., Gothilf, A., Nevo, U., Cohen, A., Smirnov, I., Steinman, L., and Schwartz, M. (2001) Posttraumatic therapeutic vaccination with modified myelin self-antigen prevents complete paralysis while avoiding autoimmune disease. J Clin Invest 108, 591–599.

    CAS  PubMed  Google Scholar 

  40. Yoles, E., and Schwartz, M. (1998) Elevation of intraocular glutamate levels in rats with partial lesion of the optic nerve. Arch Ophthalmol 116, 906–910.

    CAS  PubMed  Google Scholar 

  41. Schwartz, M., and Cohen, I. R. (2000) Autoimmunity can benefit self-maintenance. Immunol Today 21, 265–268.

    Article  CAS  PubMed  Google Scholar 

  42. Yoles, E., Belkin, M., and Schwartz, M. (1996) HU-211, a nonpsychotropic cannabinoid, produces short-and long-term neuroprotection after optic nerve axotomy. J Neurotrauma 13, 49–57.

    Article  CAS  PubMed  Google Scholar 

  43. Kipnis, J., Yoles, E., Porat, Z., Cohen, A., Mor, F., Sela, M., Cohen, I. R., and Schwartz, M. (2000) T cell immunity to copolymer 1 confers neuroprotection on the damaged optic nerve: possible therapy for optic neuropathies. Proc Natl Acad Sci USA 97, 7446–7451.

    Article  CAS  PubMed  Google Scholar 

  44. Moalem, G., Yoles, E., Leibowitz-Amit, R., Muller-Gilor, S., Mor, F., Cohen, I. R., and Schwartz, M. (2000) Autoimmune T cells retard the loss of function in injured rat optic nerves. J Neuroimmunol 106, 189–197.

    Article  CAS  PubMed  Google Scholar 

  45. Levkovitch-Verbin, H., Harris-Cerruti, C., Groner, Y., Wheeler, L. A., Schwartz, M., and Yoles, E. (2000) RGC death in mice after optic nerve crush injury: oxidative stress and neuroprotection. Invest Ophthalmol Vis Sci 41, 4169–4174.

    CAS  PubMed  Google Scholar 

  46. Fisher, J., Levkovitch-Verbin, H., Schori, H., Yoles, E., Butovsky, O., Kaye, J. F., Ben-Nun, A., and Schwartz, M. (2001) Vaccination for neuroprotection in the mouse optic nerve: implications for optic neuropathies. J Neurosci 21, 136–142.

    CAS  PubMed  Google Scholar 

  47. Fritzsch, B., and Wilm, C. (1990) Dextran amines in neuronal tracing. Trends Neurosci 13, 14

    Article  CAS  PubMed  Google Scholar 

  48. Linden, R., and Perry, V. H. (1983) Massive retinotectal projection in rats. Brain Res 272, 145–149.

    Article  CAS  PubMed  Google Scholar 

  49. Schori, H., Kipnis, J., Yoles, E., WoldeMussie, E., Ruiz, G., Wheeler, L. A., and Schwartz, M. (2001) Vaccination for protection of retinal ganglion cells against death from glutamate cytotoxicity and ocular hypertension: implications for glaucoma. Proc Natl Acad Sci USA 98, 3398–3403.

    Article  CAS  PubMed  Google Scholar 

  50. Schori, H., Robenshtok, E., Schwartz, M., and Hourvitz, A. (2005) Postintoxication vaccination for protection of neurons against the toxicity of nerve agents. Toxicol Sci 87, 163–168.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Tiziana Borsello

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Schwartz, M., Kipnis, J. (2007). Model of Acute Injury to Study Neuroprotection. In: Borsello, T. (eds) Neuroprotection Methods and Protocols. Methods in Molecular Biology, vol 399. Humana Press. https://doi.org/10.1007/978-1-59745-504-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-504-6_4

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-666-5

  • Online ISBN: 978-1-59745-504-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics