Skip to main content

Strategies and Resources for Marker Selection and Genotyping in Genetic Association Studies

  • Protocol
Pharmacogenomics and Personalized Medicine

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

  • 1161 Accesses

Abstract

The release of millions of polymorphisms by recently completed, large- scale sequencing and genotyping efforts has provided us with unprecedented resources for carrying out genetic association analyses of drug response and disease predisposition. This chapter provides a guide to some general principles and available resources for the analysis of human genetic variation in genetic association studies. We first describe some principles of association studies and discuss the utility of different experimental designs in clinical practice. We then describe current repositories of human genetic variation and bioinformatics tools that have been developed for the efficient retrieval and evaluation of these genetic variants in the context of human genome annotation and disease. Finally, we survey pros and cons of current genotyping methodologies and available commercial products for genetic association studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Venter JC, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science 291(5507):1304–51.

    Article  CAS  PubMed  Google Scholar 

  2. Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921

    Article  CAS  PubMed  Google Scholar 

  3. The International HapMap Consortium (2005) A haplotype map of the human genome.Nature 437(7063):1299–320

    Article  CAS  Google Scholar 

  4. Goldstein DB, Tate SK, Sisodiya SM (2003) Pharmacogenetics goes genomic. Nat Rev Genet 4(12):937–47.

    Article  CAS  PubMed  Google Scholar 

  5. Tate SK, Depondt C, Sisodiya SM et al (2005) Genetic predictors of the maximum doses patients receive during clinical use of the anti-epileptic drugs carbamazepine and phenytoin. Proc Natl Acad Sci U S A 102(15):5507–12

    Article  CAS  PubMed  Google Scholar 

  6. Wadelius M, Chen LY, Downes K et al (2005) Common VKORC1 and GGCX polymorphisms associated with warfarin dose. Pharmacogenomics J 5(4):262–70

    Article  CAS  PubMed  Google Scholar 

  7. Rieder MJ, Reiner AP, Gage BF et al (2005) Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med 352(22):2285–93

    Article  CAS  PubMed  Google Scholar 

  8. Sladek R, Rocheleau G, Rung J et al (2007) A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445(7130):881–5

    Article  CAS  PubMed  Google Scholar 

  9. Edwards AO, Ritter R 3rd, Abel KJ, Manning A, Panhuysen C, Farrer LA (2005) Complement factor H polymorphism and age-related macular degeneration. Science 308(5720):421–4.

    Article  CAS  PubMed  Google Scholar 

  10. Kiessling A, Ehrhart-Bornstein M (2006) Transcription factor 7-like 2 (TCFL2)—a novel factor involved in pathogenesis of type 2 diabetes. Comment on: Grant et al (2006) Nat Genet, Published online 15 January 2006. Horm Metab Res 38(2):137–8

    Article  CAS  PubMed  Google Scholar 

  11. Herbert A, Gerry NP, McQueen MB et al (2006) A common genetic variant is associated with adult and childhood obesity. Science 312(5771):279–83

    Article  CAS  PubMed  Google Scholar 

  12. Amundadottir LT, Sulem P, Gudmundsson J et al (2006) A common variant associated with prostate cancer in European and African populations. Nat Genet 38(6):652–8

    Article  CAS  PubMed  Google Scholar 

  13. Gudmundsson J, Sulem P, Manolescu A et al (2007) Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat Genet 39(5):579–80.

    Article  CAS  Google Scholar 

  14. Horvath A, Boikos S, Giatzakis C et al (2006) A genome-wide scan identifies mutations in the gene encoding phosphodiesterase 11A4 (PDE11A) in individuals with adrenocortical hyperplasia. Nat Genet 38(7):794–800

    Article  CAS  PubMed  Google Scholar 

  15. Duerr RH, Taylor KD, Brant SR et al (2006) A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314(5804):1461–3

    Article  CAS  PubMed  Google Scholar 

  16. Helgason A, Palsson S, Thorleifsson G et al (2007) Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution. Nat Genet 39(2):218–25

    Article  CAS  PubMed  Google Scholar 

  17. Helgadottir A, Manolescu A, Helgason A et al (2006) A variant of the gene encoding leukot- riene A4 hydrolase confers ethnicity-specific risk of myocardial infarction. Nat Genet 38(1):68–74.

    Article  CAS  PubMed  Google Scholar 

  18. de Bakker PI, McVean G, Sabeti PC et al (2006) A high-resolution HLA and SNP haplotype map for disease association studies in the extended human MHC. Nat Genet 38(10):1166–72

    Article  CAS  PubMed  Google Scholar 

  19. She X, Jiang Z, Clark RA et al (2004) Shotgun sequence assembly and recent segmental duplications within the human genome. Nature 431(7011):927–30

    Article  CAS  PubMed  Google Scholar 

  20. Bailey JA, Yavor AM, Viggiano L et al (2002) Human-specific duplication and mosaic transcripts: the recent paralogous structure of chromosome 22. Am J Hum Genet 70(1):83–100

    Article  CAS  PubMed  Google Scholar 

  21. Bailey JA, Yavor AM, Massa HF, Trask BJ, Eichler EE. (2001) Segmental duplications: organization and impact within the current human genome project assembly. Genome Res 11(6):1005–17.

    Article  CAS  PubMed  Google Scholar 

  22. Redon R, Ishikawa S, Fitch KR et al (2006) Global variation in copy number in the human genome. Nature 444(7118):444–54

    Article  CAS  PubMed  Google Scholar 

  23. Iafrate AJ, Feuk L, Rivera MN et al (2004) Detection of large-scale variation in the human genome. Nat Genet 36(9):949–51

    Article  CAS  PubMed  Google Scholar 

  24. Sebat J, Lakshmi B, Troge J et al (2004) Large-scale copy number polymorphism in the human genome. Science 305(5683):525–8

    Article  CAS  PubMed  Google Scholar 

  25. Sharp AJ, Locke DP, McGrath SD et al (2005) Segmental duplications and copy-number variation in the human genome. Am J Hum Genet 77(1):78–88

    Article  CAS  PubMed  Google Scholar 

  26. Tuzun E, Sharp AJ, Bailey JA et al (2005) Fine-scale structural variation of the human genome. Nat Genet 37(7):727–32

    Article  CAS  PubMed  Google Scholar 

  27. Hinds DA, Kloek AP, Jen M, Chen X, Frazer KA (2006) Common deletions and SNPs are in linkage disequilibrium in the human genome. Nat Genet 38(1):82–5

    Article  CAS  PubMed  Google Scholar 

  28. Conrad DF, Andrews TD, Carter NP, Hurles ME, Pritchard JK (2006) A high-resolution survey of deletion polymorphism in the human genome. Nat Genet 38(1):75–81

    Article  CAS  PubMed  Google Scholar 

  29. McCarroll SA, Hadnott TN, Perry GH et al (2006) Common deletion polymorphisms in the human genome. Nat Genet 38(1):86–92

    Article  CAS  PubMed  Google Scholar 

  30. Barnes MR (2006) Navigating the HapMap. Brief Bioinform 7(3):211–24

    Article  CAS  PubMed  Google Scholar 

  31. Thorisson GA, Smith AV, Krishnan L, Stein LD (2005) The International HapMap Project web site. Genome Res 15(11):1592–3

    Article  CAS  PubMed  Google Scholar 

  32. Johnson GC, Esposito L, Barratt BJ et al (2001) Haplotype tagging for the identification of common disease genes. Nat Genet 29(2):233–7

    Article  CAS  PubMed  Google Scholar 

  33. Pritchard JK, Przeworski M (2001) Linkage disequilibrium in humans: models and data. Am J Hum Genet 69(1):1–14

    Article  CAS  PubMed  Google Scholar 

  34. Stram DO (2005) Software for tag single nucleotide polymorphism selection. Hum Genomics 2(2):144–51.

    CAS  PubMed  Google Scholar 

  35. Lowe CE, Cooper JD, Chapman JM et al (2004) Cost-effective analysis of candidate genes using htSNPs: a staged approach. Genes Immun 5(4):301–5

    Article  CAS  PubMed  Google Scholar 

  36. Halldorsson BV, Istrail S, De La Vega FM (2004) Optimal selection of SNP markers for disease association studies. Hum Hered 58(3–4):190–202

    Article  CAS  PubMed  Google Scholar 

  37. Stram DO (2004) Tag SNP selection for association studies. Genet Epidemiol 27(4):365–74.

    Article  PubMed  Google Scholar 

  38. Qin ZS, Niu T, Liu JS (2002) Partition-ligation-expectation-maximization algorithm for hap- lotype inference with single-nucleotide polymorphisms. Am J Hum Genet 71(5):1242–7

    Article  CAS  PubMed  Google Scholar 

  39. Carlson CS, Eberle MA, Rieder MJ, Yi Q, Kruglyak L, Nickerson DA (2004) Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. Am J Hum Genet 74(1):106–20

    Article  CAS  PubMed  Google Scholar 

  40. de Bakker PI, Yelensky R, Pe'er I, Gabriel SB, Daly MJ, Altshuler D (2005) Efficiency and power in genetic association studies. Nat Genet 37(11):1217–23

    Article  PubMed  CAS  Google Scholar 

  41. Lee PH, Shatkay H (2006) BNTagger: improved tagging SNP selection using Bayesian networks. Bioinformatics 22(14):e211–9

    Article  CAS  PubMed  Google Scholar 

  42. He J, Zelikovsky A (2006) MLR-tagging: informative SNP selection for unphased genotypes based on multiple linear regression. Bioinformatics 22(20):2558–61

    Article  CAS  PubMed  Google Scholar 

  43. Sham PC, Ao SI, Kwan JS et al (2007) Combining functional and linkage disequilibrium information in the selection of tag SNPs. Bioinformatics 23(1):129–31

    Article  CAS  PubMed  Google Scholar 

  44. Ke X, Miretti MM, Broxholme J et al (2005) A comparison of tagging methods and their tagging space. Hum Mol Genet 14(18):2757–67

    Article  CAS  PubMed  Google Scholar 

  45. Zeggini E, Rayner W, Morris AP et al (2005) An evaluation of HapMap sample size and tagging SNP performance in large-scale empirical and simulated data sets. Nat Genet 37(12):1320–2

    Article  CAS  PubMed  Google Scholar 

  46. Gonzalez-Neira A, Ke X, Lao O et al (2006) The portability of tagSNPs across populations: a worldwide survey. Genome Res 16(3):323–30

    Article  CAS  PubMed  Google Scholar 

  47. Taylor JA, Xu ZL, Kaplan NL, Morris RW (2006) How well do HapMap haplotypes identify common haplotypes of genes? A comparison with haplotypes of 334 genes resequenced in the environmental genome project. Cancer Epidemiol Biomarkers Prev 15(1):133–7

    Article  CAS  PubMed  Google Scholar 

  48. Ribas G, Gonzalez-Neira A, Salas A et al (2006) Evaluating HapMap SNP data transferability in a large-scale genotyping project involving 175 cancer-associated genes. Hum Genet 118(6):669–79.

    Article  CAS  PubMed  Google Scholar 

  49. Ahmadi KR, Weale ME, Xue ZY et al (2005) A single-nucleotide polymorphism tagging set for human drug metabolism and transport. Nat Genet 37(1):84–9

    CAS  PubMed  Google Scholar 

  50. Soranzo N (2004) Genetic association studies: web-based resources for effective screening and assessment of candidate genes and pathways. Hum Genomics 1(4):307–9

    CAS  PubMed  Google Scholar 

  51. Bader GD, Cary MP, Sander C (2006) Pathguide: a pathway resource list. Nucl Acids Res 34(suppl_1):D504–6.

    Article  CAS  PubMed  Google Scholar 

  52. McKusick VA: Mendelian Inheritance in Man. A Catalog of Human Genes and Genetic Disorders. Baltimore: Johns Hopkins University Press, 1998 (12th edition). and Online Mendelian Inheritance in Man, OMIM (TM). McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore, MD) and National Center for Biotechnology Information, National Library of Medicine (Bethesda, MD), {date of download}. World Wide Web URL: http://www.ncbi.nlm.nih.gov/omim.

  53. Becker KG, Barnes KC, Bright TJ, Wang SA (2004) The genetic association database. Nat Genet 36(5):431–2

    Article  CAS  PubMed  Google Scholar 

  54. Gaulton KJ, Mohlke KL, Vision TJ (2007) A computational system to select candidate genes for complex human traits. Bioinformatics 23(9):1132–40

    Article  CAS  PubMed  Google Scholar 

  55. Lopez-Bigas N, Ouzounis CA (2004) Genome-wide identification of genes likely to be involved in human genetic disease. Nucl Acids Res 32(10):3108–14

    Article  CAS  PubMed  Google Scholar 

  56. Jensen LJ, Saric J, Bork P (2006) Literature mining for the biologist: from information retrieval to biological discovery. Nat Rev Genet 7(2):119–29

    Article  CAS  PubMed  Google Scholar 

  57. Jenssen TK, Laegreid A, Komorowski J, Hovig E (2001) A literature network of human genes for high-throughput analysis of gene expression. Nat Genet 28(1):21–8

    Article  CAS  PubMed  Google Scholar 

  58. Perez-Iratxeta C, Wjst M, Bork P, Andrade MA (2005) G2D: a tool for mining genes associated with disease. BMC Genet 6:45

    Article  PubMed  CAS  Google Scholar 

  59. Perez-Iratxeta C, Bork P, Andrade MA (2002) Association of genes to genetically inherited diseases using data mining. Nat Genet 31(3):316–9

    CAS  PubMed  Google Scholar 

  60. Hristovski D, Peterlin B, Mitchell JA, Humphrey SM (2005) Using literature-based discovery to identify disease candidate genes. Int J Med Informat 74(2–4):289–98

    Article  Google Scholar 

  61. Swanson DR (1986) Fish oil, Raynaud's syndrome, and undiscovered public knowledge. Perspect Biol Med 30(1):7–18

    CAS  PubMed  Google Scholar 

  62. Korbel JO, Doerks T, Jensen LJ et al (2005) Systematic association of genes to phenotypes by genome and literature mining. PLoS Biol 3(5):e134

    Article  PubMed  CAS  Google Scholar 

  63. Krauthammer M, Kaufmann CA, Gilliam TC, Rzhetsky A (2004) Molecular triangulation: bridging linkage and molecular-network information for identifying candidate genes in Alzheimer's disease. Proc Natl Acad Sci U S A 101(42):15148–53

    Article  CAS  PubMed  Google Scholar 

  64. Tiffin N, Kelso JF, Powell AR, Pan H, Bajic VB, Hide WA (2005) Integration of text- and data-mining using ontologies successfully selects disease gene candidates. Nucleic Acids Res 33(5):1544–52.

    Article  CAS  PubMed  Google Scholar 

  65. Hinds DA, Stuve LL, Nilsen GB et al (2005) Whole-genome patterns of common DNA variation in three human populations. Science 307(5712):1072–9

    Article  CAS  PubMed  Google Scholar 

  66. Sherry ST, Ward MH, Kholodov M et al (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29(1):308–11

    Article  CAS  PubMed  Google Scholar 

  67. Kitts A, Sherry S (2006) The single nucleotide polymorphism database (dbSNP) of nucleotide sequence variation. The NCBI Handbook <javascript:BVShow(‘handbook’)> Part 1. The Databases <;javascript:BVShow(‘handbook.part.1’)>; Updated: July 17, 2007 http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=handbook.chapter.ch5.

  68. Hubbard TJ, Aken BL, Beal K et al (2007) Ensembl 2007. Nucleic Acids Res 35(Database issue):D610–7.

    Article  CAS  PubMed  Google Scholar 

  69. Wang P, Dai M, Xuan W et al (2006) SNP Function Portal: a web database for exploring the function implication of SNP alleles. Bioinformatics 22(14):e523–9

    Article  CAS  PubMed  Google Scholar 

  70. Freimuth RR, Stormo GD, McLeod HL (2005) PolyMAPr: Programs for polymorphism database mining, annotation, and functional analysis. Hum Mutat 25(2):110–7

    Article  CAS  PubMed  Google Scholar 

  71. Hemminger BM, Saelim B, Sullivan PF (2006) TAMAL: an integrated approach to choosing SNPs for genetic studies of human complex traits. Bioinformatics 22(5):626–7

    Article  CAS  PubMed  Google Scholar 

  72. Conde L, Vaquerizas JM, Santoyo J et al (2004) PupaSNP Finder: a web tool for finding SNPs with putative effect at transcriptional level. Nucleic Acids Res 32(Web Server issue):W242–8.

    Article  CAS  PubMed  Google Scholar 

  73. Ramensky V, Bork P, Sunyaev S (2002) Human non-synonymous SNPs: server and survey. Nucleic Acids Res 30(17):3894–900

    Article  CAS  PubMed  Google Scholar 

  74. Karchin R, Diekhans M, Kelly L et al (2005) LS-SNP: large-scale annotation of coding non- synonymous SNPs based on multiple information sources. Bioinformatics 21(12):2814–20

    Article  CAS  PubMed  Google Scholar 

  75. Yue P, Melamud E, Moult J (2006) SNPs3D: candidate gene and SNP selection for association studies. BMC Bioinformatics 7:166

    Article  PubMed  CAS  Google Scholar 

  76. Cartegni L, Wang J, Zhu Z, Zhang MQ, Krainer AR (2003) ESEfinder: A web resource to identify exonic splicing enhancers. Nucleic Acids Res 31(13):3568–71

    Article  CAS  PubMed  Google Scholar 

  77. Han A, Kang HJ, Cho Y, Lee S, Kim YJ, Gong S (2006) SNP@Domain: a web resource of single nucleotide polymorphisms (SNPs) within protein domain structures and sequences. Nucl Acids Res 34(suppl_2):W642–4

    Article  CAS  PubMed  Google Scholar 

  78. Giacomini KM, Brett CM, Altman RB et al (2007) The pharmacogenetics research network: from SNP discovery to clinical drug response. Clin Pharmacol Ther 81(3):328–45

    Article  CAS  PubMed  Google Scholar 

  79. Altman RB (2007) PharmGKB: a logical home for knowledge relating genotype to drug response phenotype. Nat Genet 39(4):426

    Article  CAS  PubMed  Google Scholar 

  80. Ahmadian A, Ehn M, Hober S (2006) Pyrosequencing: history, biochemistry and future. Clin Chim Acta 363(1–2):83–94

    Article  CAS  PubMed  Google Scholar 

  81. Bell PA, Chaturvedi S, Gelfand CA et al (2002) SNPstream UHT: ultra-high throughput SNP genotyping for pharmacogenomics and drug discovery. Biotechniques Suppl:70–2, 4, 6–7

    Google Scholar 

  82. Bierut LJ, Madden PAF, Breslau N et al (2007) Novel genes identified in a high-density, genome wide association study for nicotine dependence. Hum Mol Genet 16(1):24–35

    Article  CAS  PubMed  Google Scholar 

  83. van den Boom D, Beaulieu M, Oeth P et al (2004) MALDI-TOF MS: a platform technology for genetic discovery. Int J Mass Spectrometry 238(2):173–88

    Article  CAS  Google Scholar 

  84. De la Vega FM, Lazaruk KD, Rhodes MD, Wenz MH (2005) Assessment of two flexible and compatible SNP genotyping platforms: TaqMan SNP genotyping assays and the SNPlex genotyping system. Mutat Res 573(1–2):111–35

    PubMed  Google Scholar 

  85. Dunbar SA (2006) Applications of Luminex xMAP technology for rapid, high-throughput multiplexed nucleic acid detection. Clin Chim Acta 363(1–2):71–82

    Article  CAS  PubMed  Google Scholar 

  86. Fan JB, Gunderson KL, Bibikova M et al (2006) Illumina universal bead arrays. Methods Enzymol 410:57–73

    Article  CAS  PubMed  Google Scholar 

  87. Favis R, Gerry NP, Cheng YW, Barany F (2005) Applications of the universal DNA microar- ray in molecular medicine. Methods Mol Med 114:25–58

    CAS  PubMed  Google Scholar 

  88. Gibson NJ (2006) The use of real-time PCR methods in DNA sequence variation analysis. Clin Chim Acta 363(1–2):32–47

    Article  CAS  PubMed  Google Scholar 

  89. Gunderson KL, Kuhn KM, Steemers FJ, Ng P, Murray SS, Shen R (2006) Whole-genome gen- otyping of haplotype tag single nucleotide polymorphisms. Pharmacogenomics 7(4):641–8

    Article  CAS  PubMed  Google Scholar 

  90. Gunderson KL, Steemers FJ, Ren H et al (2006) Whole-genome genotyping. Methods Enzymol 410:359–76

    Article  CAS  PubMed  Google Scholar 

  91. Hardenbol P, Baner J, Jain M et al (2003) Multiplexed genotyping with sequence-tagged molecular inversion probes. Nat Biotechnol 21(6):673–8

    Article  CAS  PubMed  Google Scholar 

  92. Hardenbol P, Yu F, Belmont J et al (2005) Highly multiplexed molecular inversion probe genotyping: over 10,000 targeted SNPs genotyped in a single tube assay. Genome Res 15(2):269–75.

    Article  CAS  PubMed  Google Scholar 

  93. Hinds DA, Stuve LL, Nilsen GB et al (2005) Whole-genome patterns of common DNA variation in three human populations. Science 307(5712):1072–9

    Article  CAS  PubMed  Google Scholar 

  94. Keen-Kim D, Grody WW, Richards CS (2006) Microelectronic array system for molecular diagnostic genotyping: Nanogen NanoChip 400 and molecular biology workstation. Expert Rev Mol Diagn 6(3):287–94

    Article  CAS  PubMed  Google Scholar 

  95. Kennedy GC, Matsuzaki H, Dong S et al (2003) Large-scale genotyping of complex DNA. Nat Biotechnol 21(10):1233–7

    Article  CAS  PubMed  Google Scholar 

  96. Matsuzaki H, Dong S, Loi H et al (2004) Genotyping over 100,000 SNPs on a pair of oligo- nucleotide arrays. Nat Methods 1(2):109–11

    Article  CAS  PubMed  Google Scholar 

  97. Mein CA, Barratt BJ, Dunn MG et al (2000) Evaluation of single nucleotide polymorphism typing with invader on PCR amplicons and its automation. Genome Res 10(3):330–43

    Article  CAS  PubMed  Google Scholar 

  98. Moorhead M, Hardenbol P, Siddiqui F et al (2006) Optimal genotype determination in highly multiplexed SNP data. Eur J Hum Genet 14(2):207–15

    Article  CAS  PubMed  Google Scholar 

  99. Patil N, Berno AJ, Hinds DA et al (2001) Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science 294(5547):1719–23

    Article  CAS  PubMed  Google Scholar 

  100. Ragoussis J, Elvidge G (2006) Affymetrix GeneChip system: moving from research to the clinic. Expert Rev Mol Diagn 6(2):145–52

    Article  CAS  PubMed  Google Scholar 

  101. Steemers FJ, Gunderson KL (2007) Whole genome genotyping technologies on the BeadArray platform. Biotechnol J 2(1):41–9

    Article  CAS  PubMed  Google Scholar 

  102. Tobler AR, Short S, Andersen MR et al (2005) The SNPlex genotyping system: a flexible and scalable platform for SNP genotyping. J Biomol Tech 16(4):398–406

    PubMed  Google Scholar 

  103. Gut IG (2001) Automation in genotyping of single nucleotide polymorphisms. Hum Mutat 17(6):475–92.

    Article  CAS  PubMed  Google Scholar 

  104. Kwok PY (2000) High-throughput genotyping assay approaches. Pharmacogenomics 1(1):95–100.

    Article  CAS  PubMed  Google Scholar 

  105. Kwok PY (2001) Methods for genotyping single nucleotide polymorphisms. Annu Rev Genomics Hum Genet 2:235–58

    Article  CAS  PubMed  Google Scholar 

  106. Tsuchihashi Z, Dracopoli NC (2002) Progress in high throughput SNP genotyping methods. Pharmacogenomics J 2(2):103–10

    Article  CAS  PubMed  Google Scholar 

  107. Sobrino B, Brion M, Carracedo A (2005) SNPs in forensic genetics: a review on SNP typing methodologies. Forensic Sci Int 154(2–3):181–94

    Article  CAS  PubMed  Google Scholar 

  108. Hirschhorn JN, Daly MJ (2005) Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 6(2):95–108

    Article  CAS  PubMed  Google Scholar 

  109. http://www.acgtinc.com/

  110. http://www.affymetrix.com/

  111. http://www.bioserve.com/

  112. http://www.cogenics.com/

  113. http://www.decode.com/

  114. http://www.ellipsisbio.com/

  115. http://www.epidauros.com/cms/en/index.html

  116. http://www.expressionanalysis.com/

  117. http://www.genizon.com/

  118. http://www.illumina.com/

  119. http://www.jurilab.com/

  120. http://www.marligen.com/

  121. http://www.polymorphicdna.com/

  122. http://www.sequenom.com/

  123. http://www.seqwright.com/

  124. www.perlegen.com

  125. http://www.fda.gov/ora/compliance_ref/bimo/GLP/qna.htm

  126. http://www.iso.org/iso/en/iso9000-14000/index.html

  127. http://www.gentris.com/

  128. http://www.fda.gov/cdrh/clia/

  129. http://www.genelex.com/

  130. http://www.genomas.net/

  131. http://www.tmbioscience.com/

  132. http://www.ncbi.nlm.nih.gov/projects/SNP/index.html

  133. Low YL, Wedren S, Liu J (2006) High-throughput genomic technology in research and clinical management of breast cancer. Evolving landscape of genetic epidemiological studies. Breast Cancer Res 8(3):209

    Article  PubMed  Google Scholar 

  134. Papassotiropoulos A, Stephan DA, Huentelman MJ et al (2006) Common kibra alleles are associated with human memory performance. Science 314(5798):475–8

    Article  CAS  PubMed  Google Scholar 

  135. Schymick JC, Scholz SW, Fung HC et al (2007) Genome-wide genotyping in amyotrophic lateral sclerosis and neurologically normal controls: first stage analysis and public release of data. Lancet Neurol 6(4):322–8

    Article  CAS  PubMed  Google Scholar 

  136. Yang Z, Camp NJ, Sun H et al (2006) A variant of the HTRA1 gene increases susceptibility to age-related macular degeneration. Science 314(5801):992–3

    Article  CAS  PubMed  Google Scholar 

  137. Pe'er I, de Bakker PI, Maller J, Yelensky R, Altshuler D, Daly MJ (2006) Evaluating and improving power in whole-genome association studies using fixed marker sets. Nat Genet 38(6):663–7.

    Article  PubMed  CAS  Google Scholar 

  138. Feuk L, Marshall CR, Wintle RF, Scherer SW (2006) Structural variants: changing the landscape of chromosomes and design of disease studies. Hum Mol Genet 15 Spec No 1:R57–66

    Article  CAS  Google Scholar 

  139. Stranger BE, Forrest MS, Dunning M et al (2007) Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 315(5813):848–53

    Article  CAS  PubMed  Google Scholar 

  140. http://www.fda.gov/oc/gcp/

  141. Lencz T, Morgan TV, Athanasiou M et al (2007) Converging evidence for a pseudoauto- somal cytokine receptor gene locus in schizophrenia. Mol Psychiatry 12(6):572–80. Epub.

    Article  CAS  PubMed  Google Scholar 

  142. Cardon LR (2006) Genetics. Delivering new disease genes. Science 314(5804):1403–5

    Article  CAS  PubMed  Google Scholar 

  143. Freimer NB, Sabatti C (2007) Human genetics: variants in common diseases. Nature 445(7130):828–30.

    Article  CAS  PubMed  Google Scholar 

  144. Jorgenson E, Witte JS (2006) A gene-centric approach to genome-wide association studies. Nat Rev Genet 7(11):885–91

    Article  CAS  PubMed  Google Scholar 

  145. Faham M, Baharloo S, Tomitaka S, DeYoung J, Freimer NB (2001) Mismatch repair detection (MRD): high-throughput scanning for DNA variations. Hum Mol Genet 10(16):1657–64

    Article  CAS  PubMed  Google Scholar 

  146. Fakhrai-Rad H, Zheng J, Willis TD et al (2004) SNP discovery in pooled samples with mismatch repair detection. Genome Res 14(7):1404–12

    Article  CAS  PubMed  Google Scholar 

  147. http://www.affymetrix.com/technology/mrd_technology.affx.

  148. Stanssens P, Zabeau M, Meersseman G et al (2004) High-throughput MALDI-TOF discovery of genomic sequence polymorphisms. Genome Res 14(1):126–33

    Article  CAS  PubMed  Google Scholar 

  149. Ragoussis J, Elvidge GP, Kaur K, Colella S (2006) Matrix-assisted laser desorption/ionisation, time-of-flight mass spectrometry in genomics research. PLoS Genet 2(7):e100

    Article  PubMed  CAS  Google Scholar 

  150. Qiu P, Shandilya H, D'Alessio JM, O'Connor K, Durocher J, Gerard GF (2004) Mutation detection using Surveyor nuclease. Biotechniques 36(4):702–7

    CAS  PubMed  Google Scholar 

  151. Margulies M, Egholm M, Altman WE et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437(7057):376–80

    CAS  PubMed  Google Scholar 

  152. http://www.454.com/

  153. Bentley DR (2006) Whole-genome re-sequencing. Curr Opin Genet Dev 16(6):545–52

    Article  CAS  PubMed  Google Scholar 

  154. www.solexa.com.

  155. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21(2):263–5

    Article  CAS  PubMed  Google Scholar 

  156. Weale ME, Depondt C, Macdonald SJ et al (2003) Selection and evaluation of tagging SNPs in the neuronal-sodium-channel gene SCN1A: implications for linkage-disequilibrium gene mapping. Am J Hum Genet 73(3):551–65

    Article  CAS  PubMed  Google Scholar 

  157. Stram DO, Haiman CA, Hirschhorn JN et al (2003) Choosing haplotype-tagging SNPS based on unphased genotype data using a preliminary sample of unrelated subjects with an example from the Multiethnic Cohort Study. Hum Hered 55(1):27–36

    Article  PubMed  Google Scholar 

  158. Zhang K, Qin Z, Chen T, Liu JS, Waterman MS, Sun F (2005) HapBlock: haplotype block partitioning and tag SNP selection software using a set of dynamic programming algorithms. Bioinformatics 21(1):131–4

    Article  CAS  PubMed  Google Scholar 

  159. Rinaldo A, Bacanu SA, Devlin B, Sonpar V, Wasserman L, Roeder K (2005) Characterization of multilocus linkage disequilibrium. Genet Epidemiol 28(3):193–206

    Article  PubMed  Google Scholar 

  160. Ao SI, Yip K, Ng M et al (2005) CLUSTAG: hierarchical clustering and graph methods for selecting tag SNPs. Bioinformatics 21(8):1735–6

    Article  CAS  PubMed  Google Scholar 

  161. Rebhan M, Chalifa-Caspi V, Prilusky J, Lancet D (1997) GeneCards: integrating information about genes, proteins and diseases. Trends Genet 13(4):163

    Article  CAS  PubMed  Google Scholar 

  162. Klein TE, Chang JT, Cho MK et al (2001) Integrating genotype and phenotype information: an overview of the PharmGKB project. Pharmacogenetics Research Network and Knowledge Base. Pharmacogenomics J 1(3):167–70

    CAS  PubMed  Google Scholar 

  163. Lin BK, Clyne M, Walsh M et al (2006) Tracking the epidemiology of human genes in the literature: the HuGE Published Literature database. Am J Epidemiol 164(1):1–4

    Article  PubMed  Google Scholar 

  164. Wain HM, Lush MJ, Ducluzeau F, Khodiyar VK, Povey S (2004) Genew: the Human Gene Nomenclature Database, 2004 updates. Nucleic Acids Res 32(Database issue):D255–7

    Article  CAS  PubMed  Google Scholar 

  165. Novichkova S, Egorov S, Daraselia N (2003) MedScan, a natural language processing engine for MEDLINE abstracts. Bioinformatics 19(13):1699–706

    Article  CAS  PubMed  Google Scholar 

  166. Alfarano C, Andrade CE, Anthony K et al (2005) The Biomolecular Interaction Network Database and related tools 2005 update. Nucleic Acids Res 33(Database issue): D418–24.

    Article  CAS  PubMed  Google Scholar 

  167. Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D (2004) The Database of Interacting Proteins: 2004 update. Nucl Acids Res 32(suppl_1):D449–51

    Article  CAS  PubMed  Google Scholar 

  168. Mering CV, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B (2003) STRING: a database of predicted functional associations between proteins. Nucl Acids Res 31(1):258–61

    Article  CAS  Google Scholar 

  169. Joshi-Tope G, Gillespie M, Vastrik I et al (2005) Reactome: a knowledgebase of biological pathways. Nucleic Acids Res 33(Database issue):D428–32

    Article  CAS  PubMed  Google Scholar 

  170. Peri S, Navarro JD, Amanchy R et al (2003) Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res 13(10):2363–71

    Article  CAS  PubMed  Google Scholar 

  171. Kanehisa M, Goto S, Hattori M et al (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34(Database issue):D354–7

    Article  CAS  PubMed  Google Scholar 

  172. Bonis J, Furlong LI, Sanz F (2006) OSIRIS: a tool for retrieving literature about sequence variants. Bioinformatics 22(20):2567–9

    Article  CAS  PubMed  Google Scholar 

  173. Rebholz-Schuhmann D, Kirsch H, Arregui M, Gaudan S, Riethoven M, Stoehr P (2007) EBIMed—text crunching to gather facts for proteins from Medline. Bioinformatics 23(2): e237–44.

    Article  CAS  PubMed  Google Scholar 

  174. Rebholz-Schuhmann D, Kirsch H, Arregui M, Gaudan S, Rynbeek M, Stoehr P (2006) Protein annotation by EBIMed. Nat Biotechnol 24(8):902–3

    Article  CAS  PubMed  Google Scholar 

  175. Doms A, Schroeder M (2005) GoPubMed: exploring PubMed with the Gene Ontology. Nucleic Acids Res 33(Web Server issue):W783–6

    Article  CAS  PubMed  Google Scholar 

  176. Tanabe L, Scherf U, Smith LH, Lee JK, Hunter L, Weinstein JN (1999) MedMiner: an internet text-mining tool for biomedical information, with application to gene expression profiling. Biotechniques 27(6):1210–4, 1216–7

    CAS  PubMed  Google Scholar 

  177. Goetz T, von der Lieth CW (2005) PubFinder: a tool for improving retrieval rate of relevant PubMed abstracts. Nucleic Acids Res 33(Web Server issue):W774–8

    Article  CAS  PubMed  Google Scholar 

  178. Perez-Iratxeta C, Bork P, Andrade MA (2001) XplorMed: a tool for exploring MEDLINE abstracts. Trends Biochem Sci 26(9):573–5

    Article  CAS  PubMed  Google Scholar 

  179. Hu ZZ, Mani I, Hermoso V, Liu H, Wu CH (2004) iProLINK: an integrated protein resource for literature mining. Comput Biol Chem 28(5–6):409–16

    Article  CAS  PubMed  Google Scholar 

  180. Donaldson I, Martin J, de Bruijn B et al (2003) PreBIND and Textomy—mining the biomedical literature for protein-protein interactions using a support vector machine. BMC Bioinformatics 4:11.

    Article  PubMed  Google Scholar 

  181. Smalheiser NR, Swanson DR (1998) Using ARROWSMITH: a computer-assisted approach to formulating and assessing scientific hypotheses. Comput Methods Programs Biomed 57(3):149–53.

    Article  CAS  PubMed  Google Scholar 

  182. Hristovski D, Peterlin B, Mitchell JA, Humphrey SM (2005) Using literature-based discovery to identify disease candidate genes. Int J Med Inform 74(2–4):289–98

    Article  PubMed  Google Scholar 

  183. Bowers PM, Pellegrini M, Thompson MJ, Fierro J, Yeates TO, Eisenberg D (2004) Prolinks: a database of protein functional linkages derived from coevolution. Genome Biol 5(5):R35.

    Article  PubMed  Google Scholar 

  184. The International HapMap Consortium. A haplotype map of the human genome. Nature 437(7063):1299–320.

    Google Scholar 

  185. Packer BR, Yeager M, Staats B et al (2004) SNP500Cancer: a public resource for sequence validation and assay development for genetic variation in candidate genes. Nucleic Acids Res 32(Database issue):D528–32

    Article  CAS  PubMed  Google Scholar 

  186. Packer BR, Yeager M, Burdett L et al (2006) SNP500Cancer: a public resource for sequence validation, assay development, and frequency analysis for genetic variation in candidate genes. Nucleic Acids Res 34(Database issue):D617–21

    Article  CAS  PubMed  Google Scholar 

  187. Fredman D, Munns G, Rios D et al (2004) HGVbase: a curated resource describing human DNA variation and phenotype relationships. Nucleic Acids Res 32(Database issue):D516–9

    Article  CAS  PubMed  Google Scholar 

  188. Stenson PD, Ball EV, Mort M et al (2003) Human Gene Mutation Database (HGMD): 2003 update. Hum Mutat 21(6):577–81

    Article  CAS  PubMed  Google Scholar 

  189. Kent WJ, Sugnet CW, Furey TS et al (2002) The Human Genome Browser at UCSC. Genome Res 12(6):996–1006

    CAS  PubMed  Google Scholar 

  190. Riva A, Kohane IS (2004) A SNP-centric database for the investigation of the human genome. BMC Bioinformatics 5:33

    Article  PubMed  Google Scholar 

  191. Stamm S, Riethoven JJ, Le Texier V et al (2006) ASD: a bioinformatics resource on alternative splicing. Nucleic Acids Res 34(Database issue):D46–55

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Reyna Favis for her technical insight.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Soranzo, N., Dong-Jing, F., Qingqin, S.L. (2008). Strategies and Resources for Marker Selection and Genotyping in Genetic Association Studies. In: Cohen, N. (eds) Pharmacogenomics and Personalized Medicine. Methods in Pharmacology and Toxicology. Humana Press. https://doi.org/10.1007/978-1-59745-439-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-439-1_8

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-04-6

  • Online ISBN: 978-1-59745-439-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics