Skip to main content

Pharmacogenomics Applications in Drug Metabolism

From Genotyping to Drug Label-Challenges?

  • Protocol
Pharmacogenomics and Personalized Medicine

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

  • 1204 Accesses

Abstract

There is increasing recognition that pharmacogenetic polymorphisms affecting drug metabolism are valid biomarkers affecting drug safety and efficacy. This is shown by the inclusion of information about genetic polymorphisms affecting drug metabolism on drug labels with, in some cases, a recommendation that testing for the polymorphism should be performed before prescription. However, in most cases, this information is for information only. It is likely that this is in part because testing for the relevant polymorphisms is unlikely to be available to patients being prescribed the drug, but also because clear advice about issues such as dose adjustment is not available, mainly since appropriate clinical trials have not yet been performed. Metabolic polymorphisms mentioned by the U.S. Food and Drug Administration (FDA) as valid biomarkers include those in thiopurine methyltransferase, the UDP-glucuronosyltransferase UGT1A1, the cytochromes P450 CYP2D6, CYP2C19, and CYP2C9, the N-acetyltransferase NAT2, and dihy-dropyrimidine dehydrogenase. Each of the above polymorphisms is considered here in detail, with particular reference to current knowledge and to their relevance to the drugs considered to be related to the individual polymorphisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Evans DA, White TA (1964) Human acetylation polymorphism. J Lab Clin Med 63:394–403.

    CAS  PubMed  Google Scholar 

  2. www.fda.gov/cder/genomics/genomic_biomarkers_table.htm.

  3. Weinshilboum R, Sladek SL (1980) Mercaptopurine pharmacogenetics: monogenic inheritance of erythrocyte thiopurine methyltransferase activity. Am J Hum Genet 32:651–62

    CAS  PubMed  Google Scholar 

  4. Lennard L, Gibson BES, Nicole T, Lilleyman JS (1993) Congenital thiopurine methyltrans-ferase deficiency and 6-mercaptopurine toxicity during treatment for acute lymphoblastic-leukemia. Arch Dis Child 69(5):577–9

    Article  CAS  PubMed  Google Scholar 

  5. Szumlanski C, Otterness D, Her C et al (1996) Thiopurine methyltransferase pharmacogenet-ics: human gene cloning and characterization of a common polymorphism. DNA Cell Biol 15:17–30.

    Article  CAS  PubMed  Google Scholar 

  6. Relling MV, Hancock ML, Rivera GK et al (1999) Mercaptopurine therapy intolerance and heterozygosity at the thiopurine S-methyltransferase gene locus. J Natl Cancer Inst 91(23):2001–8.

    Article  CAS  PubMed  Google Scholar 

  7. Relling MV, Rubnitz JE, Rivera GK et al (1999) High incidence of secondary brain tumours after radiotherapy and antimetabolites. Lancet 354(9172):34–9

    Article  CAS  PubMed  Google Scholar 

  8. Meggitt SJ, Gray JC, Reynolds NJ (2006) Azathioprine dosed by thiopurine methyltransferase activity for moderate-to-severe atopic eczema: a double-blind, randomised controlled trial. Lancet 367(9513):839–46

    Article  CAS  PubMed  Google Scholar 

  9. Heneghan MA, Allan ML, Bornstein JD, Muir AJ, Tendler DA (2006) Utility of thiopurine methyltransferase genotyping and phenotyping, and measurement of azathioprine metabolites in the management of patients with autoimmune hepatitis. J Hepatol 45(4):584–91

    Article  CAS  PubMed  Google Scholar 

  10. Gardiner SJ, Begg EJ (2005) Pharmacogenetic testing for drug metabolizing enzymes: is it happening in practice? Pharmacogenet Genom 15(5):365–9

    Article  CAS  Google Scholar 

  11. Woelderink A, Ibarreta D, Hopkins MM, Rodriguez-Cerezo E (2006) The current clinical practice of pharmacogenetic testing in Europe: TPMT and HER2 as case studies. Pharmacogenomics J 6(1):3–7

    Article  CAS  PubMed  Google Scholar 

  12. Wells PG, Mackenzie PI, Chowdhury JR et al (2004) Glucuronidation and the UDP-glucuronosyltransferases in health and disease. Drug Metab Dispos 32(3):281–90

    Article  CAS  PubMed  Google Scholar 

  13. Nagar S, Blanchard RL (2006) Pharmacogenetics of uridine diphosphoglucuronosyltrans-ferase (UGT) 1A family members and its role in patient response to irinotecan. Drug Metab Rev 38(3):393–409

    Article  CAS  PubMed  Google Scholar 

  14. Burchell B, Soars M, Monaghan G, Cassidy A, Smith D, Ethell B (2000) Drug-mediated toxicity caused by genetic deficiency of UDP-glucuronosyltransferases. Toxicol Lett 112–113:333–40.

    Article  PubMed  Google Scholar 

  15. http://www.twt.com.

  16. Carlini LE, Meropol NJ, Bever J et al (2005) UGT1A7 and UGT1A9 polymorphisms predict response and toxicity in colorectal cancer patients treated with capecitabine/irinotecan. Clin Cancer Res 11(3):1226–36

    CAS  PubMed  Google Scholar 

  17. Girard H, Villeneuve L, Court MH et al (2006) The novel UGT1A9 intronic I399 polymorphism appears as a predictor of 7-ethyl-10-hydroxycamptothecin glucuronidation levels in the liver. Drug Metab Dispos 34(7):1220–8

    Article  CAS  PubMed  Google Scholar 

  18. Hall D, Ybazeta G, Destro-Bisol G, Petzl-Erler ML, Di Rienzo A (1999) Variability at the uridine diphosphate glucuronosyltransferase 1A1 promoter in human populations and primates. Pharmacogenetics 9(5):591–9

    Article  CAS  PubMed  Google Scholar 

  19. Daly AK, King BP (2006) Contribution of CYP2C9 to variability in vitamin K antagonist metabolism. Expert Opin Drug Metab Toxicol 2(1):3–15

    Article  CAS  PubMed  Google Scholar 

  20. Daly AK, King BP (2003) Pharmacogenetics of oral anticoagulants. Pharmacogenetics 13(5):247–52.

    Article  CAS  PubMed  Google Scholar 

  21. Rieder MJ, Reiner AP, Gage BF et al (2005) Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med 352(22):2285–93

    Article  CAS  PubMed  Google Scholar 

  22. Sconce EA, Khan TI, Wynne HA et al (2005) The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood 106(7):2329–33

    Article  CAS  PubMed  Google Scholar 

  23. Veenstra DL, You JH, Rieder MJ et al (2005) Association of Vitamin K epoxide reductase complex 1 (VKORC1) variants with warfarin dose in a Hong Kong Chinese patient population. Pharmacogenet Genom 15(10):687–91

    Article  CAS  Google Scholar 

  24. Yuan HY, Chen JJ, Lee MT et al (2005) A novel functional VKORC1 promoter polymorphism is associated with inter-individual and inter-ethnic differences in warfarin sensitivity. Hum Mol Genet 14(13):1745–51

    Article  CAS  PubMed  Google Scholar 

  25. Hillman MA, Wilke RA, Yale SH et al (2005) A prospective, randomized pilot trial of model-based warfarin dose initiation using CYP2C9 genotype and clinical data. Clin Med Res 3(3):137–45.

    Article  CAS  PubMed  Google Scholar 

  26. Lundblad MS, Ohlsson S, Johansson P, Lafolie P, Eliasson E (2006) Accumulation of celecoxib with a 7-fold higher drug exposure in individuals homozygous for CYP2C9*3. Clin Pharmacol Ther 79(3):287–8

    Article  CAS  PubMed  Google Scholar 

  27. Rodrigues AD (2005) Impact of CYP2C9 genotype on pharmacokinetics: are all cyclooxyge-nase inhibitors the same? Drug Metab Dispos 33(11):1567–75

    Article  CAS  PubMed  Google Scholar 

  28. Mahgoub A, Idle JR, Dring LG, Lancaster R, Smith RL (1977) Polymorphic hydroxylation of debrisoquine in man. Lancet 2(8038):584–6

    Article  CAS  PubMed  Google Scholar 

  29. Daly AK (2003) Pharmacogenetics of the major polymorphic metabolizing enzymes. Fundam Clin Pharmacol 17(1):27–41

    Article  CAS  PubMed  Google Scholar 

  30. http://www.roche-diagnostics.com/products_services/amplichip_cyp450.html

  31. Ingelman-Sundberg M (1999) Duplication, multiduplication, and amplification of genes encoding drug-metabolizing enzymes: evolutionary, toxicological, and clinical pharmacological aspects. Drug Metab Rev 31(2):449–59

    Article  CAS  PubMed  Google Scholar 

  32. Kirchheiner J, Brosen K, Dahl ML et al (2001) CYP2D6 and CYP2C19 genotype-based dose recommendations for antidepressants: a first step towards subpopulation-specific dosages. Acta Psychiatr Scand 104(3):173–92

    Article  CAS  PubMed  Google Scholar 

  33. Gasche Y, Daali Y, Fathi M et al (2004) Codeine intoxication associated with ultrarapid CYP2D6 metabolism. N Engl J Med 351(27):2827–31

    Article  CAS  PubMed  Google Scholar 

  34. Koren G, Cairns J, Chitayat D, Gaedigk A, Leeder SJ (2006) Pharmacogenetics of morphine poisoning in a breastfed neonate of a codeine-prescribed mother. Lancet 368(9536):704

    Article  PubMed  Google Scholar 

  35. Kirchheiner J, Schmidt H, Tzvetkov M et al (2006) Pharmacokinetics of codeine and its metabolite morphine in ultra-rapid metabolizers due to CYP2D6 duplication. Pharmacogenomics J, published online

    Google Scholar 

  36. Desta Z, Ward BA, Soukhova NV, Flockhart DA (2004) Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: prominent roles for CYP3A and CYP2D6. J Pharmacol Exp Ther 310(3):1062–75

    Article  CAS  PubMed  Google Scholar 

  37. Jin Y, Desta Z, Stearns V et al (2005) CYP2D6 genotype, antidepressant use, and tamoxifen metabolism during adjuvant breast cancer treatment. J Natl Cancer Inst 97(1):30–9

    Article  CAS  PubMed  Google Scholar 

  38. Lim YC, Li L, Desta Z et al (2006) Endoxifen, a secondary metabolite of tamoxifen, and 4-OH-tamoxifen induce similar changes in global gene expression patterns in MCF-7 breast cancer cells. J Pharmacol Exp Ther 318(2):503–12

    Article  CAS  PubMed  Google Scholar 

  39. Goetz MP, Rae JM, Suman VJ et al (2005) Pharmacogenetics of tamoxifen biotransformation is associated with clinical outcomes of efficacy and hot flashes. J Clin Oncol 23(36):9312–8.

    Article  CAS  PubMed  Google Scholar 

  40. Goetz MP, Knox SK, Suman VJ et al (2007) The impact of cytochrome P450 2D6 metabolism in women receiving adjuvant tamoxifen. Breast Cancer Res Treat 101(1):113–21

    Article  CAS  PubMed  Google Scholar 

  41. Klotz U, Schwab M, Treiber G (2004) CYP2C19 polymorphism and proton pump inhibitors. Basic Clin Pharmacol Toxicol 95(1):2–8

    CAS  PubMed  Google Scholar 

  42. Hulot JS, Bura A, Villard E et al (2006) Cytochrome P450 2C19 loss-of-function polymorphism is a major determinant of clopidogrel responsiveness in healthy subjects. Blood 108(7):2244–7.

    Article  CAS  PubMed  Google Scholar 

  43. Desta Z, Zhao X, Shin JG, Flockhart DA (2002) Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin Pharmacokinet 41(12):913–58

    Article  CAS  PubMed  Google Scholar 

  44. Evans DAP (1989) N -acetyltransferase. Pharmacol Ther 42:157–234

    Article  CAS  PubMed  Google Scholar 

  45. http://www.louisville.edu/medschool/pharmacology/NAT.html

  46. Meyer UA, Zanger UM (1997) Molecular mechanisms of genetic polymorphisms of drug metabolism. Annu Rev Pharmacol Toxicol 37:269–96

    Article  CAS  PubMed  Google Scholar 

  47. Kinzig-Schippers M, Tomalik-Scharte D, Jetter A et al (2005) Should we use N-acetyltrans-ferase type 2 genotyping to personalize isoniazid doses? Antimicrob Agents Chemother 49(5):1733–8.

    Article  CAS  PubMed  Google Scholar 

  48. Gonzalez FJ, Fernandez-Salguero P (1995) Diagnostic analysis, clinical importance and molecular basis of dihydropyrimidine dehydrogenase deficiency. Trends Pharmacol Sci 16(10):325–7.

    Article  CAS  PubMed  Google Scholar 

  49. Collie-Duguid ES, Etienne MC, Milano G, McLeod HL (2000) Known variant DPYD alleles do not explain DPD deficiency in cancer patients. Pharmacogenetics 10(3):217–23

    Article  CAS  PubMed  Google Scholar 

  50. van Kuilenburg AB, Haasjes J, Richel DJ et al (2000) Clinical implications of dihydropyrimi-dine dehydrogenase (DPD) deficiency in patients with severe 5-fluorouracil-associated toxicity: identification of new mutations in the DPD gene. Clin Cancer Res 6(12):4705–12

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Daly, A.K. (2008). Pharmacogenomics Applications in Drug Metabolism. In: Cohen, N. (eds) Pharmacogenomics and Personalized Medicine. Methods in Pharmacology and Toxicology. Humana Press. https://doi.org/10.1007/978-1-59745-439-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-439-1_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-04-6

  • Online ISBN: 978-1-59745-439-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics