Skip to main content

Pharmacogenomic Applications in Children

  • Protocol
Pharmacogenomics and Personalized Medicine

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

  • 1161 Accesses

Abstract

Genetic diversity, together with specific environmental exposures, contributes to both disease susceptibility and interindividual variability in response to drugs. It has proven difficult to isolate disease genes that confer susceptibility to complex disorders, and as a consequence even fewer genetic variants that influence clinical response to drugs have been uncovered. As such, the candidate gene approach has largely failed to deliver and, although the family-based linkage approach has certain theoretical advantages in dealing with common/complex disorders, progress has been slower than was hoped. More recently, genome-wide association (GWA) studies have increasingly gained popularity and been found to be highly robust in identifying variants that associate with and predispose to complex disease, such as age-related macular degeneration, type 2 diabetes, and coronary artery disease. While these diseases dominantly affect adults, more recent studies have unveiled significant association of novel genes predisposing to Type 1 diabetes and autism, and replicated associations to IBD and obesity genes in children. In this regard, the Children's Hospital of Philadelphia recently founded a large-scale high-throughput genotyping program aimed at resolving the pathogenic mechanisms of complex pediatric disorders, through GWA studies of over 100,000 children. This has stirred new hope for the mapping of genes that regulate drug response related to pediatric conditions. Collectively, these studies support the notion that modern high-throughput SNP genotyping technologies, when applied to large and comprehensively phenotyped patient cohorts, capture the most clinically relevant disease-modifying and drug response genes. This review addresses both recent advances in the genotyping field, and some highlights from GWA studies, focusing on pediatric disorders, which have conclusively uncovered variants that underlie disease susceptibility and/or variability in drug response in common disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cartwright CP (2001) Pharmacogenetics: the Dx perspective. Expert Rev Mol Diagn 1(4):371–376.

    CAS  PubMed  Google Scholar 

  2. Roses AD (2002) Pharmacogenetics place in modern medical science and practice. Life Sci 70(13):1471–1480.

    CAS  PubMed  Google Scholar 

  3. Roses AD (2000) Pharmacogenetics and the practice of medicine. Nature 405(6788):857–865.

    CAS  PubMed  Google Scholar 

  4. Lin M, Aquilante C, Johnson JA, Wu R (2005) Sequencing drug response with HapMap. Pharmacogenomics J 5(3):149–156

    CAS  PubMed  Google Scholar 

  5. Stoughton RB, Friend SH (2005) How molecular profiling could revolutionize drug discovery. Nat Rev Drug Discov 4(4):345–350

    CAS  PubMed  Google Scholar 

  6. Phillips KA, Van Bebber SL (2005) Measuring the value of pharmacogenomics. Nat Rev Drug Discov 4(6):500–509

    CAS  PubMed  Google Scholar 

  7. Wilkinson GR (2005) Drug metabolism and variability among patients in drug response. N Engl J Med 352(21):2211–2221

    CAS  PubMed  Google Scholar 

  8. Voora D, Eby C, Linder MW et al (2005) Prospective dosing of warfarin based on cytochrome P-450 2C9 genotype. Thromb Haemostasis 93(4):700–705

    CAS  Google Scholar 

  9. Totah RA, Rettie AE (2005) Cytochrome P450 2C8: substrates, inhibitors, pharmacogenetics, and clinical relevance. Clin Pharmacol Ther 77(5):341–352

    CAS  PubMed  Google Scholar 

  10. de Leon J, Susce MT, Pan RM et al (2005) The CYP2D6 poor metabolizer phenotype may be associated with risperidone adverse drug reactions and discontinuation. J Clin Psychiat 66(1):15–27.

    CAS  Google Scholar 

  11. Lazarou J, Pomeranz BH, Corey PN (1998) Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA 279(15):1200–1205

    CAS  PubMed  Google Scholar 

  12. Hakonarson H, Thorvaldsson S, Helgadottir A et al (2005) Effects of a 5-lipoxygenase-activating protein inhibitor on biomarkers associated with risk of myocardial infarction: a randomized trial. JAMA 293(18):2245–2256

    CAS  PubMed  Google Scholar 

  13. Drazen JM, Silverman EK, Lee TH (2000) Heterogeneity of therapeutic responses in asthma. Brit Med Bull 56(4):1054–1070

    CAS  PubMed  Google Scholar 

  14. Xie HG, Kim RB, Wood AJ, Stein CM (2001) Molecular basis of ethnic differences in drug disposition and response. Ann Rev Pharmacol Toxicol 41, 815–850

    CAS  Google Scholar 

  15. Vermeire S, Pierik M, Hlavaty T et al (2005) Association of organic cation transporter risk haplotype with perianal penetrating Crohn's disease but not with susceptibility to IBD. Gastroenterology 129(6):1845–1853

    CAS  PubMed  Google Scholar 

  16. Hugot JP, Chamaillard M, Zouali H et al (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411(6837):599–603

    CAS  PubMed  Google Scholar 

  17. Ogura Y, Bonen DK, Inohara N et al (2001) A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 411(6837):603–606

    CAS  PubMed  Google Scholar 

  18. Rioux JD, Daly MJ, Silverberg MS et al (2001) Genetic variation in the 5q31 cytokine gene cluster confers susceptibility to Crohn disease. Nat Genet 29(2):223–228

    CAS  PubMed  Google Scholar 

  19. Peltekova VD, Wintle RF, Rubin LA et al (2004) Functional variants of OCTN cation transporter genes are associated with Crohn disease. Nat Genet 36(5):471–475

    CAS  PubMed  Google Scholar 

  20. Duerr RH, Taylor KD, Brant SR et al (2006) A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314(5804):1461–1463

    CAS  PubMed  Google Scholar 

  21. Hue S, Ahern P, Buonocore S et al (2006) Interleukin-23 drives innate and T cell-mediated intestinal inflammation. J Exp Med 203(11):2473–2483

    CAS  PubMed  Google Scholar 

  22. Kullberg MC, Jankovic D, Feng CG et al (2006) IL-23 plays a key role in Helicobacter hepati-cus-induced T cell-dependent colitis. J Exp Med 203(11):2485–2494

    CAS  PubMed  Google Scholar 

  23. Baldassano RN, Bradfield JP, Monos DS et al (2007) Association of variants of the interleukin-23 receptor (IL23R) gene with susceptibility to pediatric Crohn's disease. Clin Gastroenterol Hepatol (in press)

    Google Scholar 

  24. Oppmann B, Lesley R, Blom B et al (2000) Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13(5):715–725.

    CAS  PubMed  Google Scholar 

  25. Becker C, Wirtz S, Blessing M et al (2003) Constitutive p40 promoter activation and IL-23 production in the terminal ileum mediated by dendritic cells. The J Clin Invest 112(5):693–706.

    CAS  Google Scholar 

  26. Hampe J, Franke A, Rosenstiel P et al (2007) A genome-wide association scan of nonsynony-mous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet 39(2):207–211.

    CAS  PubMed  Google Scholar 

  27. Patterson M, Cardon L (2005) Replication publication. PLoS Biol 3(9):e327

    PubMed  Google Scholar 

  28. Baldassano RN, Bradfield JP, Monos DS et al (2007) Association of the T300A non-synonymous variant of the ATG16L1 gene with susceptibility to pediatric Crohn's disease. Gut (in press)

    Google Scholar 

  29. Cucca F, Lampis R, Congia M et al (2001) A correlation between the relative predisposition of MHC class II alleles to type 1 diabetes and the structure of their proteins. Human Mol Genet 10(19):2025–2037

    CAS  Google Scholar 

  30. Nerup J, Platz P, Andersen OO et al (1974) HL-A antigens and diabetes mellitus. Lancet 2(7885):864–866.

    CAS  PubMed  Google Scholar 

  31. Noble JA, Valdes AM, Cook M et al (1996) The role of HLA class II genes in insulin-dependent diabetes mellitus: molecular analysis of 180 Caucasian, multiplex families. Am J Human Genet 59(5):1134–1148

    CAS  Google Scholar 

  32. Bell GI, Horita S, Karam JH (1984) A polymorphic locus near the human insulin gene is associated with insulin-dependent diabetes mellitus. Diabetes 33(2):176–183

    CAS  PubMed  Google Scholar 

  33. Bennett ST, Lucassen AM, Gough SC et al (1995) Susceptibility to human type 1 diabetes at IDDM2 is determined by tandem repeat variation at the insulin gene minisatellite locus. Nat Genet 9(3):284–292

    CAS  PubMed  Google Scholar 

  34. Vafiadis P, Bennett ST, Todd JA et al (1997) Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nat Genet 15(3):289–292

    CAS  PubMed  Google Scholar 

  35. Bottini N, Musumeci L, Alonso A et al (2004) A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet 36(4):337–338

    CAS  PubMed  Google Scholar 

  36. Smyth D, Cooper JD, Collins JE et al (2004) Replication of an association between the lym-phoid tyrosine phosphatase locus (LYP/PTPN22) with type 1 diabetes, and evidence for its role as a general autoimmunity locus. Diabetes 53(11):3020–3023

    CAS  PubMed  Google Scholar 

  37. Kristiansen OP, Larsen ZM, Pociot F (2000) CTLA-4 in autoimmune diseases—a general susceptibility gene to autoimmunity? Genes Immun 1(3):170–184

    CAS  PubMed  Google Scholar 

  38. Ueda H, Howson JM, Esposito L et al (2003) Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423(6939):506–511

    CAS  PubMed  Google Scholar 

  39. Anjos SM, Tessier MC, Polychronakos C (2004) Association of the cytotoxic T lymphocyte-associated antigen 4 gene with type 1 diabetes: evidence for independent effects of two polymorphisms on the same haplotype block. The J Clin Endocr Metab 89(12):6257–6265

    CAS  Google Scholar 

  40. Vella A, Cooper JD, Lowe CE et al (2005) Localization of a type 1 diabetes locus in the IL2RA/CD25 region by use of tag single-nucleotide polymorphisms. Am J Human Genet 76(5):773–779.

    CAS  Google Scholar 

  41. Smyth DJ, Cooper JD, Bailey R et al (2006) A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (IFIH1) region. Nat Genet 38(6):617–619

    CAS  PubMed  Google Scholar 

  42. Guo D, Li M, Zhang Y et al (2004) A functional variant of SUMO4, a new I kappa B alpha modifier, is associated with type 1 diabetes. Nat Genet 36(8):837–841

    CAS  PubMed  Google Scholar 

  43. Mirel DB, Valdes AM, Lazzeroni LC et al (2002) Association of IL4R haplotypes with type 1 diabetes. Diabetes 51(11):3336–3341

    CAS  PubMed  Google Scholar 

  44. Biason-Lauber A, Boehm B, Lang-Muritano M et al (2005) Association of childhood type 1 diabetes mellitus with a variant of PAX4: possible link to beta cell regenerative capacity. Diabetologia 48(5):900–905

    CAS  PubMed  Google Scholar 

  45. Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447(7145):661–678

    Google Scholar 

  46. Todd JA, Walker NM, Cooper JD et al (2007) Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet 39(7):857–864

    CAS  PubMed  Google Scholar 

  47. Hakonarson H, Grant SF, Bradfield JP et al(2007). A Genome-Wide Association Study Identifies KIAA0350 as a Type 1 Diabetes Gene. Nature 448:591–594

    CAS  Google Scholar 

  48. Poirot L, Benoist C, Mathis D (2004) Natural killer cells distinguish innocuous and destructive forms of pancreatic islet autoimmunity. Proc Natl Acad Sci U S A 101(21):8102–8107.

    CAS  PubMed  Google Scholar 

  49. Rodacki M, Svoren B, Butty V et al (2007) Altered natural killer cells in type 1 diabetic patients. Diabetes 56(1):177–185

    CAS  PubMed  Google Scholar 

  50. Zimmet P, Alberti KG, Shaw J (2001) Global and societal implications of the diabetes epidemic. Nature 414(6865):782–787

    CAS  PubMed  Google Scholar 

  51. Yi F, Brubaker PL, Jin T (2005) TCF-4 mediates cell type-specific regulation of proglucagon gene expression by beta-catenin and glycogen synthase kinase-3beta. J Biol Chem 280(2):1457–1464.

    CAS  PubMed  Google Scholar 

  52. Rich SS (1990) Mapping genes in diabetes. Genetic epidemiological perspective. Diabetes 39(11):1315–1319.

    CAS  PubMed  Google Scholar 

  53. Tattersall RB (1974) Mild familial diabetes with dominant inheritance. The Q J Med 43(170):339–357.

    CAS  Google Scholar 

  54. Tattersal RB, Fajans SS (1975) Prevalence of diabetes and glucose intolerance in 199 offspring of thirty-seven conjugal diabetic parents. Diabetes 24(5):452–462

    CAS  PubMed  Google Scholar 

  55. Froguel P, Zouali H, Vionnet N et al (1993). Familial hyperglycemia due to mutations in glucokinase. Definition of a subtype of diabetes mellitus. N Engl J Med 328(10):697–702

    CAS  Google Scholar 

  56. Frayling TM, Bulamn MP, Ellard S et al (1997). Mutations in the hepatocyte nuclear factor-1alpha gene are a common cause of maturity-onset diabetes of the young in the U.K. Diabetes 46(4):720–725.

    CAS  Google Scholar 

  57. Hattersley AT, Beards F, Ballantyne E et al (1998). Mutations in the glucokinase gene of the fetus result in reduced birth weight. Nat Genet 19(3):268–270

    CAS  Google Scholar 

  58. Grimsby J, Sarabu R, Corbett WL et al (2003). Allosteric activators of glucokinase: potential role in diabetes therapy. Science 301(5631):370–373

    CAS  Google Scholar 

  59. Matschinsky FM, Magnuson MA, Zelent D et al (2006). The network of glucokinase-expressing cells in glucose homeostasis and the potential of glucokinase activators for diabetes therapy. Diabetes 55(1):1–12

    CAS  Google Scholar 

  60. Hattersley AT, Turner RC, Permutt MA et al (1992). Linkage of type 2 diabetes to the glucokinase gene. Lancet 339(8805):1307–1310

    CAS  Google Scholar 

  61. Njolstad PR, Sovik O, Cuesta-Munoz A et al (2001). Neonatal diabetes mellitus due to complete glucokinase deficiency. N Engl J Med 344(21):1588–1592

    CAS  Google Scholar 

  62. Heiervang E, Folling I, Sovik O et al (1989). Maturity-onset diabetes of the young. Studies in a Norwegian family. Acta Paediatr Scand 78(1):74–80

    CAS  Google Scholar 

  63. Sovik O, Njolstad P, Folling I et al (1998). Hyperexcitability to sulphonylurea in MODY3. Diabetologia 41(5):607–608

    CAS  Google Scholar 

  64. Pearson ER, Liddell WG, Shepherd M, Corrall RJ, Hattersley AT (2000). Sensitivity to sulphonylureas in patients with hepatocyte nuclear factor-1alpha gene mutations: evidence for pharmacogenetics in diabetes. Diabet Med 17(7):543–545

    CAS  Google Scholar 

  65. Shepherd M, Pearson ER, Houghton J et al (2003). No deterioration in glycemic control in HNF-1alpha maturity-onset diabetes of the young following transfer from long-term insulin to sulphonylureas. Diabet Care 26(11):3191–3192

    Google Scholar 

  66. Gloyn AL, Pearson ER, Antcliff JF et al (2004). Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N Engl J Med 350(18):1838–1849

    CAS  Google Scholar 

  67. Codner E, Flanagan S, Ellard S, Garcia H, Hattersley AT (2005). High-dose glibenclamide can replace insulin therapy despite transitory diarrhea in early-onset diabetes caused by a novel R201L Kir6.2 mutation. Diabet Care 28(3):758–759

    Google Scholar 

  68. Klupa T, Edghill EL, Nazim J et al (2005). The identification of a R201H mutation in KCNJ11, which encodes Kir6.2, and successful transfer to sustained-release sulphonylurea therapy in a subject with neonatal diabetes: evidence for heterogeneity of beta cell function among carriers of the R201H mutation. Diabetologia 48(5):1029–1031

    CAS  Google Scholar 

  69. Sagen JV, Raeder H, Hathout E et al (2004). Permanent neonatal diabetes due to mutations in KCNJ11 encoding Kir6.2: patient characteristics and initial response to sulfonylurea therapy. Diabetes 53(10):2713–2718

    CAS  Google Scholar 

  70. Zung A, Glaser B, Nimri R, Zadik Z (2004). Glibenclamide treatment in permanent neonatal diabetes mellitus due to an activating mutation in Kir6.2. The J Clin Endocr Metab 89(11):5504–5507.

    CAS  Google Scholar 

  71. Altshuler D, Hirschhorn JN, Klannemark M et al (2000). The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet 26(1):76–80.

    CAS  Google Scholar 

  72. Gloyn AL, Weedon MN, Owen KR et al (2003). Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes 52(2):568–572

    CAS  Google Scholar 

  73. Florez JC, Burtt N, de Bakker PI et al (2004). Haplotype structure and genotype-phenotype correlations of the sulfonylurea receptor and the islet ATP-sensitive potassium channel gene region. Diabetes 53(5):1360–1368

    CAS  Google Scholar 

  74. Sladek R, Rocheleau G, Rung J et al (2007). A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature

    Google Scholar 

  75. Grant SF, Thorleifsson G, Reynisdottir I et al (2006). Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 38(3):320–323

    CAS  Google Scholar 

  76. Florez JC, Jablonski KA, Bayley N et al (2006). TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention Program. N Engl J Med 355(3):241–250

    CAS  Google Scholar 

  77. Damcott CM, Pollin TI, Reinhart LJ et al (2006). Polymorphisms in the Transcription Factor 7-Like 2 (TCF7L2) Gene Are Associated With Type 2 Diabetes in the Amish: Replication and Evidence for a Role in Both Insulin Secretion and Insulin Resistance. Diabetes 55(9):2654–2659.

    CAS  Google Scholar 

  78. Groves CJ, Zeggini E, Minton J et al (2006). Association Analysis of 6,736 U.K. Subjects Provides Replication and Confirms TCF7L2 as a Type 2 Diabetes Susceptibility Gene With a Substantial Effect on Individual Risk. Diabetes 55(9):2640–2644

    CAS  Google Scholar 

  79. Scott LJ, Bonnycastle LL, Willer CJ et al (2006). Association of Transcription Factor 7-Like 2 (TCF7L2) Variants With Type 2 Diabetes in a Finnish Sample. Diabetes 55(9):2649–2653.

    CAS  Google Scholar 

  80. Zhang C, Qi L, Hunter DJ et al (2006). Variant of Transcription Factor 7-Like 2 (TCF7L2) Gene and the Risk of Type 2 Diabetes in Large Cohorts of U.S. Women and Men. Diabetes 55(9):2645–2648.

    CAS  Google Scholar 

  81. Cauchi S, Meyre D, Dina C et al (2006). Transcription Factor TCF7L2 Genetic Study in the French Population: Expression in Human {beta}-Cells and Adipose Tissue and Strong Association With Type 2 Diabetes. Diabetes 55(10):2903–2908

    CAS  Google Scholar 

  82. Saxena R, Gianniny L, Burtt NP et al (2006). Common Single Nucleotide Polymorphisms in TCF7L2 Are Reproducibly Associated With Type 2 Diabetes and Reduce the Insulin Response to Glucose in Nondiabetic Individuals. Diabetes 55(10):2890–2895

    CAS  Google Scholar 

  83. Chandak GR, Janipalli CS, Bhaskar S et al (2006). Common variants in the TCF7L2 gene are strongly associated with type 2 diabetes mellitus in the Indian population. Diabetologia.

    Google Scholar 

  84. Humphries SE, Gable D, Cooper JA et al (2006). Common variants in the TCF7L2 gene and predisposition to type 2 diabetes in UK European Whites, Indian Asians and Afro-Caribbean men and women. J Mol Med 84(12):1–10

    Google Scholar 

  85. van Vliet-Ostaptchouk JV, Shiri-Sverdlov R, Zhernakova A et al (2006). Association of variants of transcription factor 7-like 2 (TCF7L2) with susceptibility to type 2 diabetes in the Dutch Breda cohort. Diabetologia

    Google Scholar 

  86. Helgason A, Palsson S, Thorleifsson G et al (2007). Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution. Nat Genet

    Google Scholar 

  87. Saxena R, Voight BF, Lyssenko V et al (2007). Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316(5829):1331–1336

    CAS  Google Scholar 

  88. Zeggini E, Weedon MN, Lindgren CM et al (2007). Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316(5829):1336–1341

    CAS  Google Scholar 

  89. Scott LJ, Mohlke KL, Bonnycastle LL et al (2007). A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316(5829): 1341–1345.

    CAS  Google Scholar 

  90. Bennett RG, Hamel FG, Duckworth WC (2003). An insulin-degrading enzyme inhibitor decreases amylin degradation, increases amylin-induced cytotoxicity, and increases amyloid formation in insulinoma cell cultures. Diabetes 52(9):2315–2320

    CAS  Google Scholar 

  91. Farris W, Mansourian S, Chang Y et al (2003). Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci U S A 100(7):4162–4167

    CAS  Google Scholar 

  92. Rennert NJ, Charney P (2003). Preventing cardiovascular disease in diabetes and glucose intolerance: evidence and implications for care. Primary Care 30(3):569–592

    Google Scholar 

  93. Dominiczak MH (2003). Obesity, glucose intolerance and diabetes and their links to cardiovascular disease. Implications for laboratory medicine. Clin Chem Lab Med 41(9):1266–1278.

    CAS  Google Scholar 

  94. Hauner H, Meier M, Jockel KH, Frey UH, Siffert W (2003). Prediction of successful weight reduction under sibutramine therapy through genotyping of the G-protein beta3 subunit gene (GNB3) C825T polymorphism. Pharmacogenetics 13(8):453–459

    CAS  Google Scholar 

  95. Friedman JM (2004). Modern science versus the stigma of obesity. Nat Med 10(6):563–569.

    CAS  Google Scholar 

  96. Lyon HN, Hirschhorn JN (2005). Genetics of common forms of obesity: a brief overview. Am J Clin Nutr 82(1 Suppl):215S–217S

    CAS  Google Scholar 

  97. Knowler WC, Pettitt DJ, Saad MF, Bennett PH (1990). Diabetes mellitus in the Pima Indians: incidence, risk factors and pathogenesis. Diabetes Metab Rev 6(1):1–27

    CAS  Google Scholar 

  98. Zimmet P, Dowse G, Finch C, Serjeantson S, King H (1990). The epidemiology and natural history of NIDDM—lessons from the South Pacific. Diabetes Metab Rev 6(2):91–124

    CAS  Google Scholar 

  99. Stunkard AJ, Foch TT, Hrubec Z (1986). A twin study of human obesity. JAMA 256(1):51–54.

    CAS  Google Scholar 

  100. Borjeson M (1976). The aetiology of obesity in children. A study of 101 twin pairs. Acta Paediatr Scand 65(3):279–287

    CAS  Google Scholar 

  101. Hebebrand J, Friedel S, Schauble N, Geller F, Hinney A (2003). Perspectives: molecular genetic research in human obesity. Obes Rev 4(3):139–146

    CAS  Google Scholar 

  102. Farooqi IS, O'Rahilly S (2005). New advances in the genetics of early onset obesity. Int J Obes (Lond) 29(10):1149–1152

    CAS  Google Scholar 

  103. Bell CG, Walley AJ, Froguel P (2005). The genetics of human obesity. Nat Rev 6(3):221–234.

    CAS  Google Scholar 

  104. Schousboe K, Willemsen G, Kyvik KO et al (2003). Sex differences in heritability of BMI: a comparative study of results from twin studies in eight countries. Twin Res 6(5):409–421.

    Google Scholar 

  105. Herbert A, Gerry NP, McQueen MB et al (2006). A common genetic variant is associated with adult and childhood obesity. Science 312(5771):279–283

    CAS  Google Scholar 

  106. Loos RJ, Barroso I, O'Rahilly S, Wareham NJ (2007). Comment on “A common genetic variant is associated with adult and childhood obesity”. Science 315(5809):187; author reply 187

    Google Scholar 

  107. Dina C, Meyre D, Samson C et al (2007). Comment on “A common genetic variant is associated with adult and childhood obesity”. Science 315(5809):187; author reply 187

    Google Scholar 

  108. Rosskopf D, Bornhorst A, Rimmbach C et al (2007). Comment on “A common genetic variant is associated with adult and childhood obesity”. Science 315(5809):187; author reply 187

    Google Scholar 

  109. Frayling TM, Timpson NJ, Weedon MN et al (2007). A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science

    Google Scholar 

  110. Riggs BL, Melton LJ, 3rd (1986). Involutional osteoporosis. N Engl J Med 314(26):1676–1686.

    CAS  Google Scholar 

  111. Heaney RP, Abrams S, Dawson-Hughes B et al (2000). Peak bone mass. Osteoporos Int 11(12):985–1009.

    CAS  Google Scholar 

  112. Mora S, Gilsanz V (2003). Establishment of peak bone mass. Endocrin Metab Clin 32(1):39–63.

    Google Scholar 

  113. Krall EA, Dawson-Hughes B (1993). Heritable and life-style determinants of bone mineral density. J Bone Miner Res 8(1):1–9

    CAS  Google Scholar 

  114. Gueguen R, Jouanny P, Guillemin F et al (1995). Segregation analysis and variance components analysis of bone mineral density in healthy families. J Bone Miner Res 10(12):2017–2022.

    CAS  Google Scholar 

  115. Seeman E, Hopper JL, Bach LA et al (1989). Reduced bone mass in daughters of women with osteoporosis. N Engl J Med 320(9):554–558

    CAS  Google Scholar 

  116. Soroko SB, Barrett-Connor E, Edelstein SL, Kritz-Silverstein D (1994). Family history of osteoporosis and bone mineral density at the axial skeleton: the Rancho Bernardo Study. J Bone Miner Res 9(6):761–769

    CAS  Google Scholar 

  117. Morrison NA, Qi JC, Tokita A et al (1994). Prediction of bone density from vitamin D receptor alleles. Nature 367(6460):284–287

    CAS  Google Scholar 

  118. Cooper GS, Umbach DM (1996). Are vitamin D receptor polymorphisms associated with bone mineral density? A meta-analysis. J Bone Miner Res 11(12):1841–1849

    CAS  Google Scholar 

  119. Sainz J, Van Tornout JM, Loro ML et al (1997). Vitamin D-receptor gene polymorphisms and bone density in prepubertal American girls of Mexican descent. N Engl J Med 337(2):77–82.

    CAS  Google Scholar 

  120. Ferrari SL, Rizzoli R, Slosman DO, Bonjour JP (1998). Do dietary calcium and age explain the controversy surrounding the relationship between bone mineral density and vitamin D receptor gene polymorphisms? J Bone Miner Res 13(3):363–370

    CAS  Google Scholar 

  121. Matsuyama T, Ishii S, Tokita A et al (1995). Vitamin D receptor genotypes and bone mineral density. Lancet 345(8959):1238–1239

    CAS  Google Scholar 

  122. Hunter D, Major P, Arden N et al (2000). A randomized controlled trial of vitamin D supplementation on preventing postmenopausal bone loss and modifying bone metabolism using identical twin pairs. J Bone Miner Res 15(11):2276–2283

    CAS  Google Scholar 

  123. Howard G, Nguyen T, Morrison N et al (1995). Genetic influences on bone density: physiological correlates of vitamin D receptor gene alleles in premenopausal women. The J Clin Endocr Metab 80(9):2800–2805

    CAS  Google Scholar 

  124. Grant SF, Reid DM, Blake G et al (1996). Reduced bone density and osteoporosis associated with a polymorphic Sp1 binding site in the collagen type I alpha 1 gene. Nat Genet 14(2):203–205.

    CAS  Google Scholar 

  125. Uitterlinden AG, Burger H, Huang Q et al (1998). Relation of alleles of the collagen type Ialpha1 gene to bone density and the risk of osteoporotic fractures in postmenopausal women. N Engl J Med 338(15):1016–1021

    CAS  Google Scholar 

  126. Lohmueller KE, Pearce CL, Pike M, Lander ES, Hirschhorn JN (2003). Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat Genet 33(2):177–182

    CAS  Google Scholar 

  127. Mann V, Hobson EE, Li B et al (2001). A COL1A1 Sp1 binding site polymorphism predisposes to osteoporotic fracture by affecting bone density and quality. J Clin Invest 107(7):899–907.

    CAS  Google Scholar 

  128. Qureshi AM, Herd RJ, Blake GM, Fogelman I, Ralston SH (2002). COLIA1 Sp1 polymorphism predicts response of femoral neck bone density to cyclical etidronate therapy. Calcified Tissue Int 70(3):158–163

    CAS  Google Scholar 

  129. Little RD, Carulli JP, Del Mastro RG et al (2002). A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Human Genet 70(1):11–19.

    CAS  Google Scholar 

  130. Boyden LM, Mao J, Belsky J et al (2002). High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 346(20):1513–1521

    CAS  Google Scholar 

  131. Johnson ML, Gong G, Kimberling W et al (1997). Linkage of a gene causing high bone mass to human chromosome 11 (11q12–13). Am J Human Genet 60(6):1326–1332

    CAS  Google Scholar 

  132. Gong Y, Slee RB, Fukai N et al (2001). LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107(4):513–523

    CAS  Google Scholar 

  133. Worldwide variations in the prevalence of asthma symptoms: the International Study of Asthma and Allergies in Childhood (ISAAC) (1998). Eur Respir J, 12(2):315–335

    Google Scholar 

  134. Eder W, Ege MJ, von Mutius E (2006). The asthma epidemic. N Engl J Med 355(21):2226–2235.

    CAS  Google Scholar 

  135. Van Eerdewegh P, Little RD, Dupuis J et al (2002). Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature 418(6896):426–430

    Google Scholar 

  136. Zhang Y, Leaves NI, Anderson GG et al (2003). Positional cloning of a quantitative trait locus on chromosome 13q14 that influences immunoglobulin E levels and asthma. Nat Genet 34(2):181–186

    CAS  Google Scholar 

  137. Laitinen T, Polvi A, Rydman P et al (2004). Characterization of a common susceptibility locus for asthma-related traits. Science 304(5668):300–304

    CAS  Google Scholar 

  138. Hakonarson H, Gulcher JR, Stefansson K (2003). deCODE Genetics, Inc. Pharmacogenomics 4(2):209–215.

    Google Scholar 

  139. McLeod HL (2001). Pharmacogenetics: more than skin deep. Nat Genet 29(3):247–248

    CAS  Google Scholar 

  140. Fenech A, Hall IP (2002). Pharmacogenetics of asthma. Brit J Clin Pharmacol 53(1):3–15.

    CAS  Google Scholar 

  141. Hall IP (2002). Pharmacogenetics, pharmacogenomics and airway disease. Resp Res 3:10

    Google Scholar 

  142. Roses AD (2000). Pharmacogenetics and future drug development and delivery. Lancet 355(9212):1358–1361.

    CAS  Google Scholar 

  143. Hakonarson H, Wjst M (2001). Current concepts on the genetics of asthma. Curr Opin Pediatr 13(3):267–277

    CAS  Google Scholar 

  144. Bateman ED (2001). Measuring asthma control. Curr Opin Allergy Clin Immun 1(3):211–216.

    CAS  Google Scholar 

  145. Bateman ED, Boushey HA, Bousquet J et al (2004). Can guideline-defined asthma control be achieved? The Gaining Optimal Asthma ControL study. Am J Resp Crit Care 170(8):836–844.

    Google Scholar 

  146. Szefler SJ, Martin RJ, King TS et al (2002). Significant variability in response to inhaled corticosteroids for persistent asthma. J Allergy Clin Immun 109(3):410–418

    CAS  Google Scholar 

  147. Ledford D, Apter A, Brenner AM et al (1998). Osteoporosis in the corticosteroid-treated patient with asthma. J Allergy Clin Immun 102(3):353–362

    CAS  Google Scholar 

  148. Wong CA, Walsh LJ, Smith CJ et al (2000). Inhaled corticosteroid use and bone-mineral density in patients with asthma. Lancet 355(9213):1399–1403

    CAS  Google Scholar 

  149. Baylink DJ (1983). Glucocorticoid-induced osteoporosis. N Engl J Med 309(5):306–308

    CAS  Google Scholar 

  150. Garbe E, LeLorier J, Boivin JF, Suissa S (1997). Inhaled and nasal glucocorticoids and the risks of ocular hypertension or open-angle glaucoma. JAMA 277(9):722–727

    CAS  Google Scholar 

  151. Garbe E, Boivin JF, LeLorier J, Suissa S (1998). Selection of controls in database case-control studies: glucocorticoids and the risk of glaucoma. J Clin Epidemiol 51(2):129–135.

    CAS  Google Scholar 

  152. Cumming RG, Mitchell P, Leeder SR (1997). Use of inhaled corticosteroids and the risk of cataracts. N Engl J Med 337(1):8–14

    CAS  Google Scholar 

  153. Chinchilli VM (2007).General principles for systematic reviews and meta-analyses and a critique of a recent systematic review of long-acting beta-agonists. J Allergy Clin Immun 119(2):303–306.

    CAS  PubMed  Google Scholar 

  154. Choudhry S, Ung N, Avila PC et al (2005). Pharmacogenetic differences in response to albuterol between Puerto Ricans and Mexicans with asthma. Am J Resp Crit Care 171(6):563–570.

    Google Scholar 

  155. Litonjua AA, Silverman EK, Tantisira KG et al (2004). Beta 2-adrenergic receptor polymorphisms and haplotypes are associated with airways hyperresponsiveness among nonsmoking men. Chest 126(1):66–74

    CAS  Google Scholar 

  156. Chalmers GW, Macleod KJ, Little SA et al (2002). Influence of cigarette smoking on inhaled corticosteroid treatment in mild asthma. Thorax 57(3):226–230

    CAS  Google Scholar 

  157. Palmer LJ, Cookson WO (2001). Using single nucleotide polymorphisms as a means to understanding the pathophysiology of asthma. Respir Res 2(2):102–112

    CAS  Google Scholar 

  158. Gray IC, Campbell DA, Spurr NK (2000). Single nucleotide polymorphisms as tools in human genetics. Human Mol Genet 9(16):2403–2408

    CAS  Google Scholar 

  159. Schork NJ, Fallin D, Lanchbury JS (2000). Single nucleotide polymorphisms and the future of genetic epidemiology. Clin Genet 58(4):250–264

    CAS  Google Scholar 

  160. Sears MR (1998). Asthma treatment: inhaled beta-agonists. Can Respir J 5(Suppl A):54A–59A.

    Google Scholar 

  161. Hancox RJ, Sears MR, Taylor DR (1998). Polymorphism of the beta2-adrenoceptor and the response to long-term beta2-agonist therapy in asthma. Eur Respir J 11(3):589–593

    CAS  Google Scholar 

  162. Billington CK, Penn RB (2003). Signaling and regulation of G protein-coupled receptors in airway smooth muscle. Respir Res 4, 2

    Google Scholar 

  163. Drysdale CM, McGraw DW, Stack CB et al (2000). Complex promoter and coding region beta 2-adrenergic receptor haplotypes alter receptor expression and predict in vivo responsiveness. Proc Natl Acad Sci U S A 97(19):10483–10488

    CAS  Google Scholar 

  164. Reihsaus E, Innis M, MacIntyre N, Liggett SB (1993). Mutations in the gene encoding for the beta 2-adrenergic receptor in normal and asthmatic subjects. Am J Respir Cell Mol 8(3):334–339.

    CAS  Google Scholar 

  165. Martinez FD, Graves PE, Baldini M, Solomon S, Erickson R (1997). Association between genetic polymorphisms of the beta2-adrenoceptor and response to albuterol in children with and without a history of wheezing. The J Clin Invest 100(12):3184–3188

    CAS  Google Scholar 

  166. Kotani Y, Nishimura Y, Maeda H, Yokoyama M (1999). Beta2-adrenergic receptor polymorphisms affect airway responsiveness to salbutamol in asthmatics. J Asthma 36(7):583–590

    CAS  Google Scholar 

  167. Lima JJ, Thomason DB, Mohamed MH et al (1999). Impact of genetic polymorphisms of the beta2-adrenergic receptor on albuterol bronchodilator pharmacodynamics. Clin Pharmacol Ther 65(5):519–525

    CAS  Google Scholar 

  168. Tan S, Hall IP, Dewar J, Dow E, Lipworth B (1997). Association between beta 2-adrenocep-tor polymorphism and susceptibility to bronchodilator desensitisation in moderately severe stable asthmatics. Lancet 350(9083):995–999

    CAS  Google Scholar 

  169. Cho SH, Oh SY, Bahn JW et al (2005). Association between bronchodilating response to short-acting beta-agonist and non-synonymous single-nucleotide polymorphisms of beta-adrenoceptor gene. Clin Exp Allergy 35(9):1162–1167

    CAS  Google Scholar 

  170. Kukreti R, Bhatnagar P, C BR et al (2005). Beta(2)-adrenergic receptor polymorphisms and response to salbutamol among Indian asthmatics*. Pharmacogenomics 6(4):399–410

    CAS  Google Scholar 

  171. Israel E (2000). Assessment of therapeutic index of inhaled steroids. Lancet 356(9229): 527–528.

    CAS  Google Scholar 

  172. Israel E, Chinchilli VM, Ford JG et al (2004). Use of regularly scheduled albuterol treatment in asthma: genotype-stratified, randomised, placebo-controlled cross-over trial. Lancet 364(9444):1505–1512.

    CAS  Google Scholar 

  173. Jackson CM, Lipworth B (2004). Benefit-risk assessment of long-acting beta2-agonists in asthma. Drug Saf 27(4):243–270

    CAS  Google Scholar 

  174. Abramson MJ, Walters J, Walters EH (2003). Adverse effects of beta-agonists: are they clinically relevant? Am J Respir Med 2(4):287–297

    CAS  Google Scholar 

  175. Tsai HJ, Shaikh N, Kho JY et al (2006). Beta 2-adrenergic receptor polymorphisms: phar-macogenetic response to bronchodilator among African American asthmatics. Human Genet 119(5):547–557.

    CAS  Google Scholar 

  176. Snyder EM, Beck KC, Dietz NM et al (2006). Influence of beta2-adrenergic receptor genotype on airway function during exercise in healthy adults. Chest 129(3):762–770

    CAS  Google Scholar 

  177. Silverman EK, Kwiatkowski DJ, Sylvia JS et al (2003). Family-based association analysis of beta2-adrenergic receptor polymorphisms in the childhood asthma management program. J Allergy Clin Immun 112(5):870–876

    CAS  Google Scholar 

  178. Shah RR (2005). Pharmacogenetics in drug regulation: promise, potential and pitfalls. Philos T Roy Soc 360(1460):1617–1638

    CAS  Google Scholar 

  179. Goldstein DB (2005). The genetics of human drug response. Philos T Roy Soc 360(1460):1571–1572.

    CAS  Google Scholar 

  180. Silverman ES, Du J, De Sanctis GT et al (1998). Egr-1 and Sp1 interact functionally with the 5-lipoxygenase promoter and its naturally occurring mutants. Am J Respir Cell Mol 19(2):316–323.

    CAS  Google Scholar 

  181. Drazen JM, Silverman ES (1999). Genetic determinants of 5-lipoxygenase transcription. Int Arch Allergy Immun 118(2–4):275–278

    CAS  Google Scholar 

  182. Sampson AP, Cowburn AS, Sladek K et al (1997). Profound overexpression of leukotriene C4 synthase in bronchial biopsies from aspirin-intolerant asthmatic patients. Int Arch Allergy Immun 113(1–3):355–357

    CAS  Google Scholar 

  183. Sampson AP, Siddiqui S, Buchanan D et al (2000). Variant LTC(4) synthase allele modifies cysteinyl leukotriene synthesis in eosinophils and predicts clinical response to zafirlukast. Thorax 55 Suppl 2, S28–31

    Google Scholar 

  184. Currie GP, Lima JJ, Sylvester JE et al (2003). Leukotriene C4 synthase polymorphisms and responsiveness to leukotriene antagonists in asthma. Brit J Clin Pharmacol 56(4):422–426.

    CAS  Google Scholar 

  185. Sanak M, Simon HU, Szczeklik A (1997). Leukotriene C4 synthase promoter polymorphism and risk of aspirin-induced asthma. Lancet 350(9091):1599–1600

    Google Scholar 

  186. Deykin A, Wechsler ME, Boushey HA et al (2007). Combination therapy with a long-acting beta-agonist and a leukotriene antagonist in moderate asthma. Am J Resp Crit Care 175(3):228–234.

    CAS  Google Scholar 

  187. (2007).Clinical trial of low-dose theophylline and montelukast in patients with poorly controlled asthma. Am J Resp Crit Care 175(3):235–242

    Google Scholar 

  188. Lazarus SC, Lee T, Kemp JP et al (1998). Safety and clinical efficacy of zileuton in patients with chronic asthma. Am J Manag Care 4(6):841–848

    CAS  Google Scholar 

  189. Barnes PJ (1998). Efficacy of inhaled corticosteroids in asthma. J Allergy Clin Immun 102(4 Pt 1):531–538

    CAS  Google Scholar 

  190. Gagliardo R, Chanez P, Vignola AM et al (2000). Glucocorticoid receptor alpha and beta in glucocorticoid dependent asthma. Am J Resp Crit Care 162(1):7–13

    CAS  Google Scholar 

  191. Sher ER, Leung DY, Surs W et al (1994). Steroid-resistant asthma. Cellular mechanisms contributing to inadequate response to glucocorticoid therapy. J Clin Invest 93(1):33–39.

    CAS  Google Scholar 

  192. Chan MT, Leung DY, Szefler SJ, Spahn JD (1998). Difficult-to-control asthma: clinical characteristics of steroid-insensitive asthma. J Allergy Clin Immun 101(5):594–601

    CAS  Google Scholar 

  193. Chikanza LC, Panayi GS (1993). The effects of hydrocortisone on in vitro lymphocyte proliferation and interleukin-2 and -4 production in corticosteroid sensitive and resistant subjects. Eur J Clin Invest 23(12):845–850

    CAS  Google Scholar 

  194. Sousa AR, Lane SJ, Cidlowski JA, Staynov DZ, Lee TH (2000). Glucocorticoid resistance in asthma is associated with elevated in vivo expression of the glucocorticoid receptor beta-isoform. J Allergy Clin Immun 105(5):943–950

    CAS  Google Scholar 

  195. Lane SJ, Lee TH (1997). Mechanisms of corticosteroid resistance in asthmatic patients. Int Arch Allergy Immun 113(1–3):193–195

    CAS  Google Scholar 

  196. Leung DY, Chrousos GP (2000). Is there a role for glucocorticoid receptor beta in glucocorticoid-dependent asthmatics? Am J Resp Crit Care 162(1):1–3

    CAS  Google Scholar 

  197. Tantisira KG, Lake S, Silverman ES et al (2004). Corticosteroid pharmacogenetics: association of sequence variants in CRHR1 with improved lung function in asthmatics treated with inhaled corticosteroids. Human Mol Genet 13(13):1353–1359

    CAS  Google Scholar 

  198. Hakonarson H, Bjornsdottir US, Halapi E et al (2005). Profiling of genes expressed in peripheral blood mononuclear cells predicts glucocorticoid sensitivity in asthma patients. Proc Natl Acad Sci U S A 102(41):14789–14794

    CAS  Google Scholar 

  199. Hakonarson H, Halapi E, Whelan R et al (2001). Association between IL-1beta/TNF-alpha-induced glucocorticoid-sensitive changes in multiple gene expression and altered responsiveness in airway smooth muscle. Am J Respir Cell Mol 25(6):761–771

    CAS  Google Scholar 

  200. Kim MH, Agrawal DK (2002). Effect of interleukin-1beta and tumor necrosis factor-alpha on the expression of G-proteins in CD4+ T-cells of atopic asthmatic subjects. J Asthma 39(5):441–448.

    CAS  Google Scholar 

  201. Roth M, Black JL (2006). Transcription factors in asthma: are transcription factors a new target for asthma therapy? Curr Drug Targets 7(5):589–595

    CAS  Google Scholar 

  202. D'Acquisto F, Ianaro A (2006). From willow bark to peptides: the ever widening spectrum of NF-kappaB inhibitors. Curr Opin Pharmacol 6(4):387–392

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Grant, S.F., Hakonarson, H. (2008). Pharmacogenomic Applications in Children. In: Cohen, N. (eds) Pharmacogenomics and Personalized Medicine. Methods in Pharmacology and Toxicology. Humana Press. https://doi.org/10.1007/978-1-59745-439-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-439-1_20

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-04-6

  • Online ISBN: 978-1-59745-439-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics