Skip to main content

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

  • 1151 Accesses

Abstract

The interaction between genetic variation and environment is widely acknowledged as the underlying explanation for differences in drug response among individuals, as well as the stratifying force behind disease phenotypes. When DNA variation is found to associate with a phenotype, the investigator's first inclination is to try to explain the finding. The SNP(s) identified (or others in LD) are generally thought to cause either a change in amino acid sequence that alters protein structure/function or a change in gene product expression that is due to altered affinity between cis - and trans -acting factors in the promoter. There is currently an underappreciation for the multifarious interactions that exist between SNPs and the cellular machinery and how this may impact drug response and disease genetics. The purpose of this chapter is to dispel the common view that so-called functional SNPs will be recognizable either by their ability to alter the sequences of cis -acting sites or by their ability to change the amino acid sequences of proteins. Other interactions of functional consequence will also be presented for consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abkevich V, Zharkikh A, Deffenbaugh AM, et al. (2004) Analysis of missense variation in human BRCA1 in the context of interspecific sequence variation. J Med Genet 41:492–507.

    Article  CAS  PubMed  Google Scholar 

  2. Fitch WM, Markowitz E (1970) An improved method for determining codon variability in a gene and its application to the rate of fixation of mutations in evolution. Biochem Genet 4:579–593.

    Article  CAS  PubMed  Google Scholar 

  3. Grantham R (1974) Amino acid difference formula to help explain protein evolution. Science 185:862–864.

    Article  CAS  PubMed  Google Scholar 

  4. Chan PA, Duraisamy S, Miller PJ, et al. (2007) Interpreting missense variants: comparing computational methods in human disease genes CDKN2A, MLH1, MSH2, MECP2, and tyrosinase (TYR). Hum Mutat.

    Google Scholar 

  5. Henikoff S, Henikoff JG (1992) Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci U S A 89:10915–10919.

    Article  CAS  PubMed  Google Scholar 

  6. Cargill M, Altshuler D, Ireland J, et al. (1999) Characterization of single—nucleotide polymorphisms in coding regions of human genes. Nat Genet 22:231–238.

    Article  CAS  PubMed  Google Scholar 

  7. Ng PC, Henikoff S (2006) Predicting the effects of amino Acid substitutions on protein function. Annu Rev Genomics Hum Genet 7:61–80.

    Article  CAS  PubMed  Google Scholar 

  8. Ramensky V, Bork P, Sunyaev S (2002) Human non-synonymous SNPs: server and survey. Nucleic Acids Res 30:3894–3900.

    Article  CAS  PubMed  Google Scholar 

  9. Tavtigian SV, Deffenbaugh AM, Yin L, et al. (2006) Comprehensive statistical study of 452 BRCA1 missense substitutions with classification of eight recurrent substitutions as neutral. J Med Genet 43:295–305.

    Article  CAS  PubMed  Google Scholar 

  10. Mathe E, Olivier M, Kato S, Ishioka C, Hainaut P, Tavtigian SV (2006) Computational approaches for predicting the biological effect of p53 missense mutations: a comparison of three sequence analysis based methods. Nucleic Acids Res 34:1317–1325.

    Article  CAS  PubMed  Google Scholar 

  11. Phelan CM, Dapic V, Tice B, et al. (2005) Classification of BRCA1 Missense Variants of Unknown Clinical Significance. J Med Genet 42:138–146.

    Article  CAS  PubMed  Google Scholar 

  12. Mirkovic N, Marti-Renom MA, Weber BL, Sali A, Monteiro AN (2004) Structure-based assessment of missense mutations in human BRCA1: implications for breast and ovarian cancer predisposition. Cancer Res 64:3790–3797.

    Article  CAS  PubMed  Google Scholar 

  13. Williams RS, Chasman DI, Hau DD, Hui B, Lau AY, Glover JN (2003) Detection of protein folding defects caused by BRCA1-BRCT truncation and missense mutations. J Biol Chem 278:53007–53016.

    Article  CAS  PubMed  Google Scholar 

  14. Carvalho MA, Monteiro AN (2007) Correction: Functional Analysis of BRCA1 M1628V Variant. J Med Genet. 44:e78.

    Article  PubMed  Google Scholar 

  15. Hoffmeyer S, Burk O, von Richter O, et al. (2000) Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci U S A 97:3473–3478.

    Article  CAS  PubMed  Google Scholar 

  16. Drescher S, Schaeffeler E, Hitzl M, et al. (2002) MDR1 gene polymorphisms and disposition of the P-glycoprotein substrate fexofenadine. Br J Clin Pharmacol 53:526–534.

    Article  CAS  PubMed  Google Scholar 

  17. Goto M, Masuda S, Saito H, et al. (2002) C3435T polymorphism in the MDR1 gene affects the enterocyte expression level of CYP3A4 rather than Pgp in recipients of living-donor liver transplantation. Pharmacogenetics 12:451–457.

    Article  CAS  PubMed  Google Scholar 

  18. Ambudkar SV, Kimchi-Sarfaty C, Sauna ZE, Gottesman MM (2003) P-glycoprotein: from genomics to mechanism. Oncogene 22:7468–7485.

    Article  CAS  PubMed  Google Scholar 

  19. Salama NN, Yang Z, Bui T, Ho RJ (2006) MDR1 haplotypes significantly minimize intracel-lular uptake and transcellular P-gp substrate transport in recombinant LLC-PK1 cells. J Pharm Sci 95:2293–2308.

    Article  CAS  PubMed  Google Scholar 

  20. Kimchi-Sarfaty C, Oh JM, Kim I-W, et al. (2007) A “Silent” Polymorphism in the MDR1 Gene Changes Substrate Specificity. Science 315:525–528.

    Article  CAS  PubMed  Google Scholar 

  21. Kliman RM, Bernal CA (2005) Unusual usage of AGG and TTG codons in humans and their viruses. Gene 352:92–99.

    Article  CAS  PubMed  Google Scholar 

  22. De Gobbi M, Viprakasit V, Hughes JR, et al. (2006) A regulatory SNP causes a human genetic disease by creating a new transcriptional promoter. Science 312:1215–1217.

    Article  CAS  PubMed  Google Scholar 

  23. Larsen F, Gundersen G, Lopez R, Prydz H (1992) CpG islands as gene markers in the human genome. Genomics 13:1095–1107.

    Article  CAS  PubMed  Google Scholar 

  24. Carninci P, Sandelin A, Lenhard B, et al. (2006) Genome-wide analysis of mammalian promoter architecture and evolution. Nat Genet 38:626–635.

    Article  CAS  PubMed  Google Scholar 

  25. Wade PA, Gegonne A, Jones PL, Ballestar E, Aubry F, Wolffe AP (1999) Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation. Nat Genet 23:62–66.

    CAS  PubMed  Google Scholar 

  26. Baylin SB (2005) DNA methylation and gene silencing in cancer. Nat Clin Pract Oncol 2 Suppl 1:S4–11.

    Article  CAS  Google Scholar 

  27. Ehrich M, Field JK, Liloglou T, et al. (2006) Cytosine methylation profiles as a molecular marker in non-small cell lung cancer. Cancer Res 66:10911–10918.

    Article  CAS  PubMed  Google Scholar 

  28. Wang Y, Fan PS, Kahaleh B (2006) Association between enhanced type I collagen expression and epigenetic repression of the FLI1 gene in scleroderma fibroblasts. Arthritis Rheum 54:2271–2279.

    Article  CAS  PubMed  Google Scholar 

  29. Sekigawa I, Kawasaki M, Ogasawara H, et al. (2006) DNA methylation: its contribution to systemic lupus erythematosus. Clin Exp Med 6:99–106.

    Article  CAS  PubMed  Google Scholar 

  30. Post WS, Goldschmidt-Clermont PJ, Wilhide CC, et al. (1999) Methylation of the estrogen receptor gene is associated with aging and atherosclerosis in the cardiovascular system. Cardiovasc Res 43:985–991.

    Article  CAS  PubMed  Google Scholar 

  31. Jiang YH, Sahoo T, Michaelis RC, et al. (2004) A mixed epigenetic/genetic model for oligo-genic inheritance of autism with a limited role for UBE3A. Am J Med Genet A 131:1–10.

    Article  PubMed  Google Scholar 

  32. Abdolmaleky HM, Cheng KH, Faraone SV, et al. (2006) Hypomethylation of MB-COMT promoter is a major risk factor for schizophrenia and bipolar disorder. Hum Mol Genet 15:3132–3145.

    Article  CAS  PubMed  Google Scholar 

  33. Dempster EL, Mill J, Craig IW, Collier DA (2006) The quantification of COMT mRNA in post mortem cerebellum tissue: diagnosis, genotype, methylation and expression. BMC Med Genet 7:10.

    Article  PubMed  CAS  Google Scholar 

  34. Zhao Z, Zhang F (2006) Sequence context analysis of 8.2 million single nucleotide polymorphisms in the human genome. Gene 366:316–324.

    Article  CAS  PubMed  Google Scholar 

  35. Pesole G, Mignone F, Gissi C, Grillo G, Licciulli F, Liuni S (2001) Structural and functional features of eukaryotic mRNA untranslated regions. Gene 276:73–81.

    Article  CAS  PubMed  Google Scholar 

  36. Mikulits W, Schranzhofer M, Beug H, Mullner EW (1999) Post-transcriptional control via iron-responsive elements: the impact of aberrations in hereditary disease. Mutat Res 437:219–230.

    Article  CAS  PubMed  Google Scholar 

  37. Chen JM, Ferec C, Cooper DN (2006) A systematic analysis of disease-associated variants in the 3′ regulatory regions of human protein-coding genes II: the importance of mRNA secondary structure in assessing the functionality of 3′ UTR variants. Hum Genet 120:301–333.

    Article  CAS  PubMed  Google Scholar 

  38. Mignone F, Grillo G, Licciulli F, et al. (2005) UTRdb and UTRsite: a collection of sequences and regulatory motifs of the untranslated regions of eukaryotic mRNAs. Nucleic Acids Res 33:D141–146.

    Article  CAS  PubMed  Google Scholar 

  39. Takabatake N, Shibata Y, Abe S, et al. (2006) A single nucleotide polymorphism in the CCL1 gene predicts acute exacerbations in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 174:875–885.

    Article  CAS  PubMed  Google Scholar 

  40. Karim MA, Wang X, Hale TC, Elbein SC (2005) Insulin Promoter Factor 1 variation is associated with type 2 diabetes in African Americans. BMC Med Genet 6:37.

    Article  PubMed  CAS  Google Scholar 

  41. Ng DP, Canani L, Araki S, et al. (2002) Minor effect of GLUT1 polymorphisms on susceptibility to diabetic nephropathy in type 1 diabetes. Diabetes 51:2264–2269.

    Article  CAS  PubMed  Google Scholar 

  42. Morganti M, Ciantelli M, Giglioni B, et al. (2005) Relationships between promoter polymorphisms in the thymidylate synthase gene and mRNA levels in colorectal cancers. Eur J Cancer 41:2176–2183.

    Article  CAS  PubMed  Google Scholar 

  43. Visel A, Minovitsky S, Dubchak I, Pennacchio LA (2007) VISTA Enhancer Browser—a database of tissue-specific human enhancers. Nucleic Acids Res 35:D88–92.

    Article  CAS  PubMed  Google Scholar 

  44. Boyka Anachkova VDGR (2005) Nuclear matrix support of DNA replication. Journal of Cellular Biochemistry 96:951–961.

    Article  PubMed  CAS  Google Scholar 

  45. Kimiko M. Tsutsui KS, Ken Tsutsui (2005) Dynamic view of the nuclear matrix. Acta Med Okayama 59:113–120.

    Google Scholar 

  46. Milot E, Fraser P, Grosveld F (1996) Position effects and genetic disease. Trends Genet 12:123–126.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang SB, Qian RL (2002) The interaction between the human beta-globin locus control region and nuclear matrix. Cell Res 12:411–416.

    Article  PubMed  Google Scholar 

  48. Ostermeier GC, Liu Z, Martins RP, et al. (2003) Nuclear matrix association of the human beta-globin locus utilizing a novel approach to quantitative real-time PCR. Nucleic Acids Res 31:3257–3266.

    Article  CAS  PubMed  Google Scholar 

  49. Kukreti R, C BR, Das SK, et al. (2002) Study of the single nucleotide polymorphism (SNP) at the palindromic sequence of hypersensitive site (HS)4 of the human beta-globin locus control region (LCR) in Indian population. Am J Hematol 69:77–79.

    Article  CAS  PubMed  Google Scholar 

  50. Sriroongrueng W, Schleiemacher E, Panich V, et al. (1997) Analysis of beta-thalassemia mutations and beta-locus control region hypersensitive sites 2, 3 and 4 in southern Thailand. Southeast Asian J Trop Med Public Health 28 (Suppl 3):120–127.

    PubMed  Google Scholar 

  51. Liebich I, Bode J, Frisch M, Wingender E (2002) S/MARt DB: a database on scaffold/matrix attached regions. Nucleic Acids Res 30:372–374.

    Article  CAS  PubMed  Google Scholar 

  52. Berman HM, Olson WK, Beveridge DL, et al. (1992) The nucleic acid database. A comprehensive relational database of three-dimensional structures of nucleic acids. Biophys J 63:751–759.

    Article  CAS  PubMed  Google Scholar 

  53. Wang AJ, Quigley GJ, Kolpak FJ, van der Marel G, van Boom JH, Rich A (1981) Left-handed double helical DNA: variations in the backbone conformation. Science 211:171–176.

    Article  CAS  PubMed  Google Scholar 

  54. Crawford JL, Kolpak FJ, Wang AH, et al. (1980) The tetramer d(CpGpCpG) crystallizes as a left-handed double helix. Proc Natl Acad Sci U S A 77:4016–4020.

    Article  CAS  PubMed  Google Scholar 

  55. Lafer EM, Moller A, Nordheim A, Stollar BD, Rich A (1981) Antibodies specific for left-handed Z-DNA. Proc Natl Acad Sci U S A 78:3546–3550.

    Article  CAS  PubMed  Google Scholar 

  56. Krishna P, Fritzler MJ, Van de Sande JH (1993) Interactions of anti-DNA antibodies with Z-DNA. Clin Exp Immunol 92:51–57.

    Article  CAS  PubMed  Google Scholar 

  57. Alam K, Ali R (1992) Human autoantibody binding to multiple conformations of DNA. Biochem Int 26:597–605.

    CAS  PubMed  Google Scholar 

  58. Thomas TJ, Meryhew NL, Messner RP (1990) Enhanced binding of lupus sera to the polyamine-induced left-handed Z-DNA form of polynucleotides. Arthritis Rheum 33:356–365.

    Article  CAS  PubMed  Google Scholar 

  59. Thomas TJ, Meryhew NL, Messner RP (1988) DNA sequence and conformation specificity of lupus autoantibodies. Preferential binding to the left-handed Z-DNA form of synthetic polynucleotides. Arthritis Rheum 31:367–377.

    Article  CAS  PubMed  Google Scholar 

  60. Herbert A, Lowenhaupt K, Spitzner J, Rich A (1995) Chicken double-stranded RNA adenosine deaminase has apparent specificity for Z-DNA. Proc Natl Acad Sci U S A 92:7550–7554.

    Article  CAS  PubMed  Google Scholar 

  61. Herbert AG, Spitzner JR, Lowenhaupt K, Rich A (1993) Z-DNA binding protein from chicken blood nuclei. Proc Natl Acad Sci U S A 90:3339–3342.

    Article  CAS  PubMed  Google Scholar 

  62. Schwartz T, Rould MA, Lowenhaupt K, Herbert A, Rich A (1999) Crystal structure of the Zalpha domain of the human editing enzyme ADAR1 bound to left-handed Z-DNA. Science 284:1841–1845.

    Article  CAS  PubMed  Google Scholar 

  63. Oh DB, Kim YG, Rich A (2002) Z-DNA-binding proteins can act as potent effectors of gene expression in vivo. Proc Natl Acad Sci U S A 99:16666–16671.

    Article  CAS  PubMed  Google Scholar 

  64. Liu R, Liu H, Chen X, Kirby M, Brown PO, Zhao K (2001) Regulation of CSF1 promoter by the SWI/SNF-like BAF complex. Cell 106:309–318.

    Article  CAS  PubMed  Google Scholar 

  65. Liu H, Mulholland N, Fu H, Zhao K (2006) Cooperative activity of BRG1 and Z-DNA formation in chromatin remodeling. Mol Cell Biol 26:2550–2559.

    Article  CAS  PubMed  Google Scholar 

  66. Champ PC, Maurice S, Vargason JM, Camp T, Ho PS (2004) Distributions of Z-DNA and nuclear factor I in human chromosome 22: a model for coupled transcriptional regulation. Nucleic Acids Res 32:6501–6510.

    Article  CAS  PubMed  Google Scholar 

  67. Garner MM, Felsenfeld G (1987) Effect of Z-DNA on nucleosome placement. J Mol Biol 196:581–590.

    Article  CAS  PubMed  Google Scholar 

  68. Kwon JA, Rich A (2005) Biological function of the vaccinia virus Z-DNA-binding protein E3L: gene transactivation and antiapoptotic activity in HeLa cells. Proc Natl Acad Sci U S A 102:12759–12764.

    Article  CAS  PubMed  Google Scholar 

  69. Schroth GP, Chou PJ, Ho PS (1992) Mapping Z-DNA in the human genome. Computer-aided mapping reveals a nonrandom distribution of potential Z-DNA-forming sequences in human genes. J Biol Chem 267:11846–11855.

    CAS  PubMed  Google Scholar 

  70. Ho PS, Ellison MJ, Quigley GJ, Rich A (1986) A computer aided thermodynamic approach for predicting the formation of Z-DNA in naturally occurring sequences. Embo J 5:2737–2744.

    CAS  PubMed  Google Scholar 

  71. Siddiqui-Jain A, Grand CL, Bearss DJ, Hurley LH (2002) Direct evidence for a G-quadru-plex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc Natl Acad Sci U S A 99:11593–11598.

    Article  CAS  PubMed  Google Scholar 

  72. Rangan A, Fedoroff OY, Hurley LH (2001) Induction of duplex to G-quadruplex transition in the c-myc promoter region by a small molecule. J Biol Chem 276:4640–4646.

    Article  CAS  PubMed  Google Scholar 

  73. Hurley LH (2001) Secondary DNA structures as molecular targets for cancer therapeutics. Biochem Soc Trans 29:692–696.

    Article  CAS  PubMed  Google Scholar 

  74. Grand CL, Han H, Munoz RM, et al. (2002) The cationic porphyrin TMPyP4 down-regulates c-MYC and human telomerase reverse transcriptase expression and inhibits tumor growth in vivo. Mol Cancer Ther 1:565–573.

    CAS  PubMed  Google Scholar 

  75. Htun H, Dahlberg JE (1988) Single strands, triple strands, and kinks in H-DNA. Science 241:1791–1796.

    Article  CAS  PubMed  Google Scholar 

  76. Voloshin ON, Mirkin SM, Lyamichev VI, Belotserkovskii BP, Frank-Kamenetskii MD (1988) Chemical probing of homopurine-homopyrimidine mirror repeats in supercoiled DNA. Nature 333:475–476.

    Article  CAS  PubMed  Google Scholar 

  77. Wang G, Vasquez KM (2004) Naturally occurring H-DNA-forming sequences are mutagenic in mammalian cells. Proc Natl Acad Sci U S A 101:13448–13453.

    Article  CAS  PubMed  Google Scholar 

  78. Kim EL, Peng H, Esparza FM, Maltchenko SZ, Stachowiak MK (1998) Cruciform-extruding regulatory element controls cell-specific activity of the tyrosine hydroxylase gene promoter. Nucleic Acids Res 26:1793–1800.

    Article  CAS  PubMed  Google Scholar 

  79. Bartel DP (2004) MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell 116:281–297.

    Article  CAS  PubMed  Google Scholar 

  80. Kim VN, Nam J-W (2006) Genomics of microRNA. Trends in Genetics 22:165–173.

    Article  CAS  PubMed  Google Scholar 

  81. Michalak P (2006) RNA world — the dark matter of evolutionary genomics. J Evol Biol 19:1768–1774.

    Article  CAS  PubMed  Google Scholar 

  82. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858.

    Article  CAS  PubMed  Google Scholar 

  83. Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294:858–862.

    Article  CAS  PubMed  Google Scholar 

  84. Lim LP, Glasner ME, Yekta S, Burge CB, Bartel DP (2003) Vertebrate microRNA genes. Science 299:1540.

    Article  CAS  PubMed  Google Scholar 

  85. Lim LP, Lau NC, Weinstein EG, et al. (2003) The microRNAs of Caenorhabditis elegans. Genes Dev 17:991–1008.

    Article  CAS  PubMed  Google Scholar 

  86. Mourelatos Z, Dostie J, Paushkin S, et al. (2002) miRNPs: a novel class of ribonucleopro-teins containing numerous microRNAs. Genes Dev 16:720–728.

    Article  CAS  PubMed  Google Scholar 

  87. Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A (2004) Identification of mammalian microRNA host genes and transcription units. Genome Res 14:1902–1910.

    Article  CAS  PubMed  Google Scholar 

  88. Krek A, Grun D, Poy MN, et al. (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500.

    Article  CAS  PubMed  Google Scholar 

  89. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20.

    Article  CAS  PubMed  Google Scholar 

  90. Xie X, Lu J, Kulbokas EJ, et al. (2005) Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature 434:338–345.

    Article  CAS  PubMed  Google Scholar 

  91. Griffiths-Jones S (2004) The microRNA Registry. Nucl Acids Res 32:D109–111.

    Article  CAS  PubMed  Google Scholar 

  92. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34:D140–144.

    Article  CAS  PubMed  Google Scholar 

  93. Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6:857–866.

    Article  CAS  PubMed  Google Scholar 

  94. Calin GA, Ferracin M, Cimmino A, et al. (2005) A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353:1793–1801.

    Article  CAS  PubMed  Google Scholar 

  95. He H, Jazdzewski K, Li W, et al. (2005) The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci U S A 102:19075–19080.

    Article  CAS  PubMed  Google Scholar 

  96. Krichevsky AM, King KS, Donahue CP, Khrapko K, Kosik KS (2003) A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 9:1274–1281.

    Article  CAS  PubMed  Google Scholar 

  97. Abelson JF, Kwan KY, O'Roak BJ, et al. (2005) Sequence variants in SLITRK1 are associated with Tourette's syndrome. Science 310:317–320.

    Article  CAS  PubMed  Google Scholar 

  98. Chen K, Rajewsky N (2006) Natural selection on human microRNA binding sites inferred from SNP data. Nat Genet 38:1452–1456.

    Article  CAS  PubMed  Google Scholar 

  99. Cote F, Fligny C, Bayard E, et al. (2007) Maternal serotonin is crucial for murine embryonic development. PNAS 104:329–334.

    Article  CAS  PubMed  Google Scholar 

  100. Sladek R, Rocheleau G, Rung J, et al. (2007) A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445:881–885.

    Article  CAS  PubMed  Google Scholar 

  101. Ornoy A (2005) Growth and neurodevelopmental outcome of children born to mothers with pregestational and gestational diabetes. Pediatr Endocrinol Rev 3:104–113.

    PubMed  Google Scholar 

  102. DeBoer T, Wewerka S, Bauer PJ, Georgieff MK, Nelson CA (2005) Explicit memory performance in infants of diabetic mothers at 1 year of age. Dev Med Child Neurol 47:525–531.

    Article  PubMed  Google Scholar 

  103. Ornoy A, Ratzon N, Greenbaum C, Wolf A, Dulitzky M (2001) School-age children born to diabetic mothers and to mothers with gestational diabetes exhibit a high rate of inattention and fine and gross motor impairment. J Pediatr Endocrinol Metab 14 (Suppl 1):681–689.

    PubMed  Google Scholar 

  104. Shakespeare W. “There are more things in heaven and earth, Horatio, Than are dreamt of in your philosophy.” In: Hamlet Act 1 Scene V abt 1601.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Favis, R. (2008). Holy SNP, Batman!. In: Cohen, N. (eds) Pharmacogenomics and Personalized Medicine. Methods in Pharmacology and Toxicology. Humana Press. https://doi.org/10.1007/978-1-59745-439-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-439-1_10

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-04-6

  • Online ISBN: 978-1-59745-439-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics