Skip to main content

Bridging the Gene-to-Function Knowledge Gap Through Functional Genomics

  • Protocol
  • First Online:
Plant Genomics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 513))

Summary

The explosion of genomics data has led to a significant knowledge gap, with thousands of genes identified having no known function. The following chapter describes the available forward and reverse genetics strategies, which can assist researchers in assigning functions to novel genes. Details of the available resources for a number of model and crop species are provided. In addition, protocols are presented for utilising T-DNA tagged populations to identify genes underlying novel phenotypes and to assist with functional characterisation of target genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arabidopsis Genome Initiative. (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815.

    Article  Google Scholar 

  2. Yu, J., Hu, S., Wang, J., Wong, G.K., Li, S., Liu, B., Deng, Y., Dai, L., Zhou, Y., Zhang, X., et al. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296, 79–92.

    Article  PubMed  CAS  Google Scholar 

  3. Goff, S.A., Ricke, D., Lan, T.H., Presting, G., Wang, R., Dunn, M., Glazebrook, J., Sessions, A., Oeller, P., Varma, H., et al. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296, 92–100.

    Article  PubMed  CAS  Google Scholar 

  4. http://www.maizegenome.org/

  5. http://www.genome.ou.edu/medicago.html

  6. http://www.kazusa.or.jp/lotus/

  7. http://www.sgn.cornell.edu/help/about/tomato_sequencing.pl

  8. http://www.brassica.info/b_rapa_sequencing_project/bac_sequencing.htm<!

  9. Jackson S.A., Rokhsar, D., Stacey, G., Shoemaker, R.C., Schmutz, J., and Grimwood, J. (2006) Toward a reference sequence of the soybean genome: a multiagency effort. Crop Sci. 46, 55–61.

    Google Scholar 

  10. http://www.ncbi.nlm.nih.gov/dbEST/

  11. Paterson, A.H. (2006) Leafing through the genomes of our major crop plants: strategies for capturing unique information. Nat. Rev. Genet. 7, 174–184.

    Article  PubMed  CAS  Google Scholar 

  12. Rédei, G.P. and Koncz, C. (1992) Classical Mutagenesis, in Methods in Arabidopsis Research (Koncz, C., Chua, N.-H., and Schell, J. eds.), World Scientific Publishing Company, Singapore, pp. 16–82.

    Google Scholar 

  13. Alonso, J.M., Stepanova, A.N., Leisse, T.J., Kim, C.J., Chen, H., Shinn, P., Stevenson, D.K., Zimmerman, J., Barajas, P., Cheuk, R., et al. (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301, 653–657.

    Article  PubMed  Google Scholar 

  14. Sallaud, C., Gay, C., Larmande, P., Bes, M., Piffanelli, P., Piegu, B., Droc, G., Regad, F., Bourgeois, E., Meynard, D., et al. (2004) High throughput T-DNA insertion mutagenesis in rice: a first step towards in silico reverse genetics. Plant J. 39, 450–464.

    Article  PubMed  CAS  Google Scholar 

  15. Tissier, A.F., Marillonnet, S., Klimyuk, V., Patel, K., Torres, M.A., Murphy, G., and Jones, J.D. (1999) Multiple independent defective suppressor-mutator transposon insertions in Arabidopsis: a tool for functional genomics. Plant Cell 11, 1841–1852.

    Article  PubMed  CAS  Google Scholar 

  16. Zhao, T., Palotta, M., Langridge, P., Prasad, M., Graner, A., Schulze-Lefert, P., and Koprek, T. (2006) Mapped Ds/T-DNA launch pads for functional genomics in barley. Plant J. 47, 811–826.

    Article  PubMed  Google Scholar 

  17. Hilson, P., Allemeersch, J., Altmann, T., Aubourg, S., Avon, A., Beynon, J., Bhalerao, R.P., Bitton, F., Caboche, M., Cannoot, B., et al. (2004) Versatile gene-specific sequence tags for Arabidopsis functional genomics: transcript profiling and reverse genetics applications. Genome Res. 14, 2176–2189.

    Article  PubMed  CAS  Google Scholar 

  18. Feng, C.-P. and Mundy, J. (2006) Gene discovery and functional analyses in the model plant Arabidopsis. J. Integr. Plant Biol. 48, 5–14.

    Article  CAS  Google Scholar 

  19. Martienssen, R.A. (1998) Functional genomics: probing plant gene function and expression with transposons. Proc. Natl. Acad. Sci. USA 95, 2021–2026.

    Article  PubMed  CAS  Google Scholar 

  20. Petersen, M., Brodersen, P., Naested, H., Andreasson, E., Lindhart, U., Johansen, B., Nielsen, H.B., Lacy, M., Austin, M.J., Parker, J.E., et al. (2000) Arabidopsis map kinase 4 negatively regulates systemic acquired resistance. Cell 103, 1111–1120.

    Article  PubMed  CAS  Google Scholar 

  21. Meinke, D.W., Meinke, L.K., Showalter, T.C., Schissel, A.M., Mueller, L.A., and Tzafrir, I. (2003) A sequence-based map of Arabidopsis genes with mutant phenotypes. Plant Physiol. 131, 409–418.

    Article  PubMed  CAS  Google Scholar 

  22. Springer, P.S. (2000) Gene traps: tools for plant development and genomics. Plant Cell 12, 1007–1020.

    Article  PubMed  CAS  Google Scholar 

  23. Rojas-Pierce, M. and Springer, P.S. (2003) Gene and enhancer traps for gene discovery. Methods Mol. Biol. 236, 221–240.

    PubMed  CAS  Google Scholar 

  24. Weigel, D., Ahn, J.H., Blazquez, M.A., Borevitz, J.O., Christensen, S.K., Fankhauser, C., Ferrandiz, C., Kardailsky, I., Malancharuvil, E.J., Neff, M.M., et al. (2000) Activation tagging in Arabidopsis. Plant Physiol. 122, 1003–1013.

    Article  PubMed  CAS  Google Scholar 

  25. Li, X. and Zhang, Y. (2002) Reverse genetics by fast neutron mutagenesis in higher plants. Funct. Integr. Genomics 2, 254–258.

    Article  PubMed  CAS  Google Scholar 

  26. Perry, J.A., Wang, T.L., Welham, T.J., Gardner, S., Pike, J.M., Yoshida, S., and Parniske, M. (2003) A TILLING reverse genetics tool and a web-accessible collection of mutants of the legume Lotus japonicus. Plant Physiol. 131, 866–871.

    Article  PubMed  CAS  Google Scholar 

  27. Caldwell, D.G., McCallum, N., Shaw, P., Muehlbauer, G.J., Marshall, D.F., and Waugh, R. (2004) A structured mutant population for forward and reverse genetics in Barley (Hordeum vulgare L.). Plant J. 40, 143–150.

    Article  PubMed  CAS  Google Scholar 

  28. Kim, Y., Schumaker, K.S., and Zhu, J.K. (2006) EMS mutagenesis of Arabidopsis. Methods Mol. Biol. 323, 101–103.

    PubMed  CAS  Google Scholar 

  29. Greene, E.A., Codomo, C.A., Taylor, N.E., Henikoff, J.G., Till, B.J., Reynolds, S.H., Enns, L.C., Burtner, C., Johnson, J.E., Odden, A.R., Comai, L., and Henikoff, S. (2003) Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics 164, 731–740.

    PubMed  CAS  Google Scholar 

  30. Page, D.R. and Grossniklaus, U. (2002) The art and design of genetic screens: Arabidopsis thaliana. Nat. Rev. Genet. 3, 124–136.

    Article  PubMed  CAS  Google Scholar 

  31. McCallum, C.M, Comai, L., Greene, E.A., and Henikoff, S. (2000) Targeting induced local lesions IN genomes (TILLING) for plant functional genomics. Plant Physiol. 123, 439–442.

    Article  PubMed  CAS  Google Scholar 

  32. Watson, J.M., Fusaro, A.F., Wang, M., and Waterhouse, P.M. (2005) RNA silencing platforms in plants. FEBS Lett. 579, 5982–5987.

    Article  PubMed  CAS  Google Scholar 

  33. Mansoor, S., Amin, I., Hussain, M., Zafar, Y., and Briddon, R.W. (2006) Engineering novel traits in plants through RNA interference. Trends Plant Sci. 11, 559–565.

    Article  PubMed  CAS  Google Scholar 

  34. Krysan, P.J., Young, J.C., and Sussman, M.R. (1999) T-DNA as an insertional mutagen in Arabidopsis. Plant Cell 11, 2283–2290.

    Article  PubMed  CAS  Google Scholar 

  35. Galbiati, M., Moreno, M.A., Nadzan, G., Zourelidou, M., and Dellaporta, S.L. (2000) Large-scale T-DNA mutagenesis in Arabidopsis for functional genomic analysis. Funct. Integr. Genomics 1, 25–34.

    Article  PubMed  CAS  Google Scholar 

  36. Sessions, A., Burke, E., Presting, G., Aux, G., McElver, J., Patton, D., Dietrich, B., Ho, P., Bacwaden, J., Ko, C., et al. (2002) A high-throughput Arabidopsis reverse genetics system. Plant Cell 14, 2985–2994.

    Article  PubMed  CAS  Google Scholar 

  37. Shure, M., Wessler, S., and Fedoroff, N. (1983) Molecular identification and isolation of the waxy locus in maize. Cell 35, 225–233.

    Article  PubMed  CAS  Google Scholar 

  38. Sharpe, A.G., Parkin, I.A.P., Keith, D.J., and Lydiate, D.J. (1995) Frequent nonreciprocal translocations in the amphidiploid genome of oilseed rape (Brassica napus). Genome 38, 1112–1121.

    Article  PubMed  CAS  Google Scholar 

  39. Sambrook, J. and Russell, D.W. (eds.) (2001) Molecular Cloning. A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  40. Verwoerd, T.C., Dekker, B.M., and Hoekema, A. (1989) A small-scale procedure for the rapid isolation of plant RNAs. Nucleic Acids Res. 17, 2362.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isobel A. P. Parkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Robinson, S., Parkin, I. (2009). Bridging the Gene-to-Function Knowledge Gap Through Functional Genomics. In: Gustafson, J., Langridge, P., Somers, D. (eds) Plant Genomics. Methods in Molecular Biology™, vol 513. Humana Press. https://doi.org/10.1007/978-1-59745-427-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-427-8_9

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-997-0

  • Online ISBN: 978-1-59745-427-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics