Skip to main content

Genome Sequencing Approaches and Successes

  • Protocol
  • First Online:
Plant Genomics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 513))

Summary

Sequence data is crucial to our understanding of crop growth and development, as differences in DNA sequence are responsible for almost all of the heritable differences between crop varieties and ecotypes. The sequence of a genome is often referred to as the genetic blueprint, and is the foundation for all additional information from the genome to the phenome. The value of DNA sequence is leading to rapid improvements in sequencing technology, increasing throughput, and reducing costs, and technological advances are accelerating with the introduction of novel approaches that are replacing the traditional Sanger-based methods. As genome sequencing becomes cheaper, it will be applied to a greater number of species with increasingly large and complex genomes. This will increase our understanding of how differences in the sequence relate to phenotypic observations, heritable traits, speciation, and evolution. Our understanding of plants will be greatly enhanced by this flow of sequence information, with direct benefit for crop improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams, M.D., Kelley, J.M., Gocayne, J.D., Dubnick, M., Polymeropoulos, M.H., Xiao, H., Merril, C.R., Wu, A., Olde, B., Moreno, R.F., Kerlavage, A.R., Mccombie, W.R., and Venter, J.C. (1991) Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252, 1651–1656.

    Article  PubMed  CAS  Google Scholar 

  2. The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815.

    Article  Google Scholar 

  3. Yu, J., Hu, S., Wang, J., Wong, G.K., Li, S., Liu, B., Deng, Y., Dai, L., Zhou, Y., Zhang, X., Cao, M., Liu, J., Sun, J., Tang, J., Chen, Y., Huang, X., Lin, W., Ye, C., Tong, W., Cong, L., Geng, J., Han, Y., Li, L., Li, W., Hu, G., Huang, X., Li, W., Li, J., Liu, Z., Li, L., Liu, J., Qi, Q., Liu, J., Li, L., Li, T., Wang, X., Lu, H., Wu, T., Zhu, M., Ni, P., Han, H., Dong, W., Ren, X., Feng, X., Cui, P., Li, X., Wang, H., Xu, X., Zhai, W., Xu, Z., Zhang, J., He, S., Zhang, J., Xu, J., Zhang, K., Zheng, X., Dong, J., Zeng, W., Tao, L., Ye, J., Tan, J., Ren, X., Chen, X., He, J., Liu, D., Tian, W., Tian, C., Xia, H., Bao, Q., Li, G., Gao, H., Cao, T., Wang, J., Zhao, W., Li, P., Chen, W., Wang, X., Zhang, Y., Hu, J., Wang, J., Liu, S., Yang, J., Zhang, G., Xiong, Y., Li, Z., Mao, L., Zhou, C., Zhu, Z., Chen, R., Hao, B., Zheng, W., Chen, S., Guo, W., Li, G., Liu, S., Tao, M., Wang, J., Zhu, L., Yuan, L., and Yang, H. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296, 79–92.

    Article  PubMed  CAS  Google Scholar 

  4. Goff, S.A., Ricke, D., Lan, T.H., Presting, G., Wang, R., Dunn, M., Glazebrook, J., Sessions, A., Oeller, P., and Varma, H. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296, 92–100.

    Article  PubMed  CAS  Google Scholar 

  5. Jackson, S., Rounsley, S., and Purugganan, M. (2006) Comparative sequencing of plant genomes: choices to make. Plant Cell 18, 1100–1104.

    Article  PubMed  CAS  Google Scholar 

  6. Wortman, J.R., Haas, B.J., Hannick, L.I., Smith, R.K. Jr., Maiti, R., Ronning, C.M., Chan, A.P., Yu, C., Ayele, M., Whitelaw, M., White, O.R., and Town, C.D. (2003) Annotation of the Arabidopsis Genome. Plant Physiology 132, 461–468.

    Article  PubMed  CAS  Google Scholar 

  7. Meinke, D.W., Cherry, M.J., Dean, C., Rounsley, S.D., and Koornneef, M. (1998) Arabidopsis thaliana: a model plant for Genome analysis. Science 282, 662–682.

    Article  PubMed  CAS  Google Scholar 

  8. Sato, S., Kotani, H., Nakamura, Y., Kaneko, T., Asamizu, E., Fukami, M., Miyajima, N., and Tabata, S. (1997) Structural analysis of Arabidopsis thaliana chromosome 5. I. Sequence features of the 1.6 Mb regions covered by twenty physically assigned P1 clones. DNA Research 4, 215–219.

    Article  PubMed  CAS  Google Scholar 

  9. Garvin, D.F. (2007) Brachypodium: a new monocot model plant system emerges. Journal of the Science of Food and Agriculture 87, 1177–1179.

    Article  CAS  Google Scholar 

  10. Hasterok, R., Marasek, A., Donnison, I.S., Armstead, I., Thomas, A., King, I.P., Wolny, E., Idziak, D., Draper, J., and Jenkins, G. (2006) Alignment of the genomes of Brachypodium distachyon and temperate cereals and grasses using bacterial artificial chromosome landing with fluorescence in situ hybridization. Genetics 173, 349–362.

    Article  PubMed  CAS  Google Scholar 

  11. Cannon, S.B., Sterck, L., Rombauts, S., Sato, S., Cheung, F., Gouzy, J., Wang, X., Mudge, J., Vasdewani, J., Schiex, T., Spannagl, M., Monaghan, E., Nicholson, C., Humphray, S.J., Schoof, H., Mayer, K.F.X., Rogers, J., Quétier, F., Oldroyd, G.E., Debellé, F., Cook, D.R., Retzel, E.F., Roe, B.A., Town, C.D., Tabata, S., Van de Peer, Y., and Young, N.D. (2006) Legume evolution viewed through the Medicago truncatula and Lotus japonicus genomes. PNAS USA 103, 14959–14964.

    Article  PubMed  CAS  Google Scholar 

  12. Young, N.D., Cannon, S.B., Sato, S., Kim, D., Cook, D.R., Town, C.D., Roe, B.A., and Tabata, S. (2005) Sequencing the genespaces of Medicago truncatula and Lotus japonicus. Plant Physiology 137, 1174–1181.

    Article  PubMed  CAS  Google Scholar 

  13. Cannon, S.B., Crow, J.A., Heuer, M.L., Wang, X., Cannon, E.K.S., Dwan, C., Lamblin, A., Vasdewani, J., Mudge, J., Cook, A., Gish, J., Cheung, F., Kenton, S., Kunau, T.M., Brown, D., May, G.D., Kim, D., Cook, D.R., Roe, B.A., Town, C.D., Young, N.D., and Retzel, E.F. (2005) Databases and information integration for the Medicago truncatula genome and transcriptome. Plant Physiology 138, 38–46.

    Article  PubMed  CAS  Google Scholar 

  14. Brunner, A.M., Busov, V.B., and Strauss, S.H. (2004) Poplar genome sequence: functional genomics in an ecologically dominant plant species. Trends in Plant Science 9, 49–56.

    Article  PubMed  CAS  Google Scholar 

  15. Tuskan, G.A., DiFazio, S.P., and Teichmann, T. (2004) Poplar genomics is getting popular: the impact of the poplar genome project on tree research. Plant Biology 6, 2–4.

    Article  PubMed  CAS  Google Scholar 

  16. Zhao, W., Wang, J., He, X., Huang, X., Jiao, Y., Dai, M., Wei, S., Fu, J., Chen, Y., and Ren, X. (2004) BGI-RIS: an integrated information resource and comparative analysis workbench for rice genomics. Nucleic Acids Research 32, D377–D382.

    Article  PubMed  CAS  Google Scholar 

  17. Chen, M., SanMiguel, P., de Oliveira, A.C., Woo, S.S., Zhang, H., Wing, R.A., and Bennetzen, J.L. (1997) Microcolinearity in sh2-homologous regions of the maize, rice, and sorghum genomes. PNAS USA 94, 3431–3435.

    Article  PubMed  CAS  Google Scholar 

  18. Yu, J., Wang, J., Lin, W., Li, S., Li, H., Zhou, J., Ni, P., Dong, W., Hu, S., and Zeng, C. (2005) The Genomes of Oryza sativa: a history of duplications. PLoS Biology 3, e38.

    Article  PubMed  Google Scholar 

  19. Shibata, D. (2005) Genome sequencing and functional genomics approaches in tomato. Journal of General Plant Pathology 71, 1–7.

    Article  CAS  Google Scholar 

  20. Lijavetzky, D., Muzzi, G., Wicker, T., Keller, B., Wing, R., and Dubcovsky, J. (1999) Construction and characterization of a bacterial artificial chromosome (BAC) library for the A genome of wheat. Genome 42, 1176–1182.

    Article  PubMed  CAS  Google Scholar 

  21. Moullet, O., Zhang, H.B., and Lagudah, E.S. (1999) Construction and characterisation of a large DNA insert library from the D genome of wheat. Theoretical and Applied Genetics 99, 305–313.

    Article  Google Scholar 

  22. Cenci, A., Chantret, N., Kong, X., Gu, Y., Anderson, O.D., Fahima, T., Distelfeld, A., and Dubcovsky, J. (2003) Construction and characterization of a half million clone BAC library of durum wheat (Triticum turgidum ssp. durum). Theoretical and Applied Genetics 107, 931–939.

    Article  PubMed  CAS  Google Scholar 

  23. Allouis, S., Moore, G., Bellec, A., Sharp, R., Faivre Rampant, P., Mortimer, K., Pateyron, S., Foote, T.N., Griffiths, S., Caboche, M., and Chalhoub, B. (2003) Construction and characterisation of a hexaploid wheat (Triticum aestivum L.) BAC library from the reference germplasm ‘Chinese Spring’. Cereal Research Communications 31, 331–338.

    CAS  Google Scholar 

  24. Shen, B., Wang, D.M., McIntyre, C.L., and Liu, C.J. (2005) A ‘Chinese Spring’ wheat (Triticum aestivum L.) bacterial artificial chromosome library and its use in the isolation of SSR markers for targeted genome regions. Theoretical and Applied Genetics 111, 1489–1494.

    Article  PubMed  CAS  Google Scholar 

  25. Nilmalgoda, S.D., Cloutier, S., and Walichnowski, A.Z. (2003) Construction and characterization of a bacterial artificial chromosome (BAC) library of hexaploid wheat (Triticum aestivum L.) and validation of genome coverage using locus-specific primers. Genome 46, 870–878.

    Article  PubMed  CAS  Google Scholar 

  26. Janda, J., Bartos, J., Safar, J., Kubalakova, M., Valarik, M., Cihalikova, J., Simkova, H., Caboche, M., Sourdille, P., Bernard, M., Chalhoub, B., and Dolezel, J. (2004) Construction of a subgenomic BAC library specific for chromosomes 1D, 4D and 6D of hexaploid wheat. Theoretical and Applied Genetics 109, 1337–1345.

    Article  PubMed  CAS  Google Scholar 

  27. Gill, B.S., Appels, R., Botha-Oberholster, A., Buell, C.R., Bennetzen, J.L., Chalhoub, B., Chumley, F., Dvorák, J., Iwanaga, M., Keller, B., Li, W., McCombie, W.R., Ogihara, Y., Quetier, F., and Sasaki, T. (2004) A workshop report on wheat genome sequencing: international genome research on wheat consortium. Genetics 168, 1087–1096.

    Article  PubMed  Google Scholar 

  28. Safar, J., Bartos, J., Janda, J., Bellec, A., Kubalakova, M., Valarik, M., Pateyron, S., Weiserova, J., Tuskova, R., Cihalikova, J., Vrana, J., Simkova, H., Faivre Rampant, P., Sourdille, P., Caboche, M., Bernard, M., Dolezel, J., and Chalhoub, B. (2004) Dissecting large and complex genomes: flow sorting and BAC cloning of individual chromosomes from bread wheat. Plant Journal 39, 960–968.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Imelfort, M., Batley, J., Grimmond, S., Edwards, D. (2009). Genome Sequencing Approaches and Successes. In: Gustafson, J., Langridge, P., Somers, D. (eds) Plant Genomics. Methods in Molecular Biology™, vol 513. Humana Press. https://doi.org/10.1007/978-1-59745-427-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-427-8_18

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-997-0

  • Online ISBN: 978-1-59745-427-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics