Skip to main content

Ecological Genomics of Natural Plant Populations: The Israeli Perspective

  • Protocol
  • First Online:
Plant Genomics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 513))

Summary

The genomic era revolutionized evolutionary population biology. The ecological genomics of the wild progenitors of wheat and barley reviewed here was central in the research program of the Institute of Evolution, University of Haifa, since 1975 (http://evolution.haifa.ac.il). We explored the following questions: (1) How much of the genomic and phenomic diversity of wild progenitors of cultivars (wild emmer wheat, Triticum dicoccoides, the progenitor of most wheat, plus wild relatives of the Aegilops species; wild barley, Hordeum spontaneum, the progenitor of cultivated barley; wild oat, Avena sterilis, the progenitor of cultivated oats; and wild lettuce species, Lactuca, the progenitor and relatives of cultivated lettuce) are adaptive and processed by natural selection at both coding and noncoding genomic regions? (2) What is the origin and evolution of genomic adaptation and speciation processes and their regulation by mutation, recombination, and transposons under spatiotemporal variables and stressful macrogeographic and microgeographic environments? (3) How much genetic resources are harbored in the wild progenitors for crop improvement? We advanced ecological genetics into ecological genomics and analyzed (regionally across Israel and the entire Near East Fertile Crescent and locally at microsites, focusing on the “Evolution Canyon” model) hundreds of populations and thousands of genotypes for protein (allozyme) and deoxyribonucleic acid (DNA) (coding and noncoding) diversity, partly combined with phenotypic diversity. The environmental stresses analyzed included abiotic (climatic and microclimatic, edaphic) and biotic (pathogens, demographic) stresses. Recently, we introduced genetic maps, cloning, and transformation of candidate genes. Our results indicate abundant genotypic and phenotypic diversity in natural plant populations. The organization and evolution of molecular and organismal diversity in plant populations, at all genomic regions and geographical scales, are nonrandom and are positively correlated with, and partly predictable by, abiotic and biotic environmental heterogeneity and stress. Biodiversity evolution, even in small isolated populations, is primarily driven by natural selection including diversifying, balancing, cyclical, and purifying selection regimes interacting with, but, ultimately, overriding the effects of mutation, migration, and stochasticity. The progenitors of cultivated plants harbor rich genetic resources and are the best hope for crop improvement by both classical and modern biotechnological methods. Future studies should focus on the interplay between structural and functional genome organization focusing on gene regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Luikart, G., England, P.R., Tallmon, D., Jordan, S., and Taberlet, E. (2003) The power and promises of population genomics; from genotyping to genome typing. Nat. Rev. Genet. 4, 981–984.

    Article  PubMed  CAS  Google Scholar 

  2. Feder, M. and Mitchell-Olds, T. (2003) Evolutionary and ecological functional genomics. Nat. Rev. Genet. 4, 649–654.

    Article  Google Scholar 

  3. Nevo, E. (2001a) Evolution of genome-phenome diversity under environmental stress. Proc. Natl. Acad. Sci. USA 98, 6233–6240.

    Article  CAS  Google Scholar 

  4. Nevo, E. (2004a) Evolution of genome dynamics under ecological stress, in Dynamical Genetics 2004 (Parisi, V., DeFonzo, V., and Alluffi-Pentini, F., eds.), Research Signpost, Kerala, India, pp. 1–27.

    Google Scholar 

  5. Nevo, E. (2004b) Genomic diversity in nature and domestication, in Diversity and Evolution of Plants. Genotypic and Phenotypic Variation in Higher Plants (Henry, R., ed.), CABI Publishing CAB International, Wallingford, UK, pp. 287–315.

    Google Scholar 

  6. Nevo, E. (2004c) Population genetic structure of wild barley and wheat in the Near East Fertile Crescent: regional and local adaptive patterns, in Cereal Genomics (Gupta, P.K. and Varshney, R.K., eds.), Springer, the Netherlands, pp. 135–163.

    Google Scholar 

  7. Shimizu, K. and Purganan, M. (2005) Evolutionary and ecological genomics of Arabidopsis. Plant Physiol. 138, 578–584.

    Article  PubMed  CAS  Google Scholar 

  8. Kohn, M., Murphy, W., Ostrander, E., and Wayne, R. (2006) Genomics and conservation genetics. Trends Ecol. Evol. 21, 629–637.

    Article  PubMed  Google Scholar 

  9. Kuang, H., van Eck, H.J., Sicard, D., Michelmore, R., and Nevo E. (2008) Evolution and genetic population structure of prickly lettuce (Lactuca serriola) and its RGC2 resistance gene cluster. Genetics 178, 1547–1558.

    Article  PubMed  CAS  Google Scholar 

  10. Whitehead, A. and Crawford, D.C. (2006) Neutral and adaptive variation in gene expression. Proc. Natl. Acad. Sci. USA 103, 5425–5430.

    Article  PubMed  CAS  Google Scholar 

  11. Eyre-Walker, A. (2006) The genomic rate of adaptive evolution. Trends Ecol. Evol. 21, 569–575.

    Article  PubMed  Google Scholar 

  12. Peng, J.H., Ronin, Y.I., Fahima, T., Roder, M.S., Li, Y.C., Nevo, E., and Korol, A. B. (2003) Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat. Proc. Natl. Acad. Sci. USA 100, 2489–2494.

    Article  PubMed  CAS  Google Scholar 

  13. Verhoeven, K.J.F., Vanhala, T.K., Biere, A., Nevo, E., and van Damme, J.M.M. (2004) The genetic basis of adaptive population differentiation: a QTL-analysis of fitness traits in two wild barley populations from contrasting habitats. Evolution 58, 270–283.

    PubMed  Google Scholar 

  14. Chen, G., Krugman, T., Fahima, T., Chen, Y., Hu, Y., Röder, M., Nevo, E., and Korol, A.B. (2008) Chromosomal regions controlling seedling drought resistance of Israeli wild barley, Hordeum spontaneum populations (submitted).

    Google Scholar 

  15. Cronin, J.K., Bundock, P.C., Henry, R.J., and Nevo, E. (2007) Adaptive climatic molecular evolution on wild barley at the Isa defense locus. Proc. Nat. Acad. Sci. USA 10Y 2773–2778.

    Google Scholar 

  16. Raskina, O., Belyayev, A., and Nevo, E. (2004) Quantum speciation in Aegilops: molecular cytogenetic evidence from rDNA cluster variability in natural populations. Proc. Natl. Acad. Sci. USA 101, 14818–14823.

    Article  PubMed  CAS  Google Scholar 

  17. Parnas, T. (2006) Evidence for incipient sympatric speciation in wild barley, Hordeum spontaneum, at “Evolution Canyon”, Mount Carmel, Israel, based on hybridization, physiological, and genetic diversity estimates. M.Sc. Thesis, University of Haifa.

    Google Scholar 

  18. Nevo, E. (1997) Evolution in action across phylogeny caused by microclimatic stresses at “Evolution Canyon”. Theor. Popul. Biol. 52, 231–243.

    Article  PubMed  CAS  Google Scholar 

  19. Kimber, G. and Feldman, M. (1987) Wild wheat. An Introduction. University of Missouri, Columbia Spec. Rep. 353, College of Agriculture.

    Google Scholar 

  20. Zohary, D. and Hopf, M. (2000) Domestication of Plants in the Old World, 3rd Edn. Oxford University Press, Oxford.

    Google Scholar 

  21. Nevo, E. (1992) Origin, evolution, population genetics and resources for breeding of wild barley, H. spontaneum, in the Fertile Crescent, in Barley: Genetics, Biochemistry, Molecular Biology and Biotechnology (Shewry, P.R., ed.), CAB International, Wallingford, UK, pp. 19–43.

    Google Scholar 

  22. Nevo, E. (2001b) Genetic resources of wild emmer, Triticum dicoccoides, for wheat improvement. Isr. J. Plant. Sci. 49, 77–91.

    Google Scholar 

  23. Nevo, E. (2006) Genome evolution of wild cereal diversity and prospects for crop improvement. Plant Genet. Res. 4(1), 36–46.

    Article  CAS  Google Scholar 

  24. Nevo, E., Korol, A.B., Beiles, A., and Fahima, T. (2002) Evolution of Wild Emmer Wheat Improvement. Population Genetics, Genetic Resources, and Genome Organization of Wheat’s Progenitor, Triticum dicoccoides. Springer-Verlag, Berlin.

    Google Scholar 

  25. Feldman, M. and Sears, E.R. (1981) The wild gene resources of wheat. Sci. Am. 244, 102–112.

    Article  Google Scholar 

  26. Nevo, E. and Payne, P.I. (1987) Wheat storage proteins: diversity for HMW glutenin subunits in wild emmer from Israel. I. Geographical patterns and ecological predictability. Theor. Appl. Genet. 74, 827–836.

    Article  CAS  Google Scholar 

  27. Li, Y.C., Fahima, T., Peng, J.H., Röder, M.S., Kirzhner, V.M., Beiles, A., Korol, A.B., and Nevo, E. (2000a) Edaphic microsatellite DNA divergence in wild emmer wheat, Triticum dicoccoides, at a microsite: Tabigha, Israel. Theor. Appl. Genet. 101, 1029–1038.

    Article  CAS  Google Scholar 

  28. Li, Y.C., Fahima, T., Beiles, A., Korol, A.B., and Nevo, E. (1999) Microclimatic stress and adaptive DNA differentiation in wild emmer wheat (T. dicoccoides). Theor. Appl. Genet. 98, 873–883.

    Article  CAS  Google Scholar 

  29. Li, Y.C. (2000) Microscale molecular population genetics of wild emmer wheat, Triticum dicoccoides, in Israel. Ph.D. Thesis, University of Haifa, Israel, pp. 258.

    Google Scholar 

  30. Li, Y.C., Fahima, T., Peng, J.H., Röder, M.S., Kirzhner, V.M., Beiles, A., Korol, A.B., and Nevo, E. (2000b) Microsatellite diversity correlated with ecological-edaphic and genetic factors in three microsites of wild emmer wheat in north Israel. Mol. Biol. Evol. 17, 851–862.

    CAS  Google Scholar 

  31. Li, Y.C., Röder, M.S., Fahima, T., Kirzhner, V.M., Beiles, A., Korol, A.B., and Nevo, E. (2000c) Natural selection causing microsatellite divergence in wild emmer wheat at the ecologically variable microsite at Ammiad, Israel. Theor. Appl. Genet. 100, 985–999.

    Article  Google Scholar 

  32. Li, Y.C., Krugman, T., Fahima, T., Beiles, A., Röder, M.S., Korol, A.B., and Nevo, E. (2000d) Parallel microgeographic patterns of genetic diversity and divergence revealed by allozyme, RAPD, and microsatellites in Triticum dicoccoides at Ammiad, Israel. Conserv. Genet. 1, 191–207.

    Article  CAS  Google Scholar 

  33. Li, Y.C., Fahima, T., Röder, M.S., Beiles, A., Korol, A.B., and Nevo, E. (2002) Climatic effects on microsatellite diversity in wild emmer wheat, Triticum dicoccoides, at the Yehudiyya microsite. Heredity. 89, 127–132.

    Google Scholar 

  34. Li, Y.C., Krugman, T., Fahima, T., Beiles, A., Korol, A.B., and Nevo, E. (2001) Spatiotemporal allozyme divergence caused by aridity stress in a natural population of wild wheat, Triticum dicoccoides, at the Ammiad microsite, Israel. Theor. Appl. Genet. 102, 853–864.

    Article  CAS  Google Scholar 

  35. Li, Y.C., Röder, M.S., Fahima, T., Kirzhner, V.M., Beiles, A., Korol, A.B., and Nevo, E. (2002) Climatic effects on microsatellite diversity in wild emmer wheat, Triticum dicoccoides, at Yehudiyya microsite. Heredity 89, 127–132.

    Article  PubMed  CAS  Google Scholar 

  36. Morgante, M., Hanafey, M., and Powell, W. (2002) Microsatellites are preferentially associated with non-repetitive DNA in plant genomes. Genetics 30, 194–200.

    PubMed  CAS  Google Scholar 

  37. Van Valen, L. (1965) Morphological variation and width of ecological niche. Am. Nat. 99, 377–390.

    Article  Google Scholar 

  38. Kirzhner, V.M., Korol, A., Turpeinen, T., and Nevo, E. (1995) Genetic supercycles caused by cyclical selection. Proc. Natl. Acad. Sci. USA 92, 7130–7133.

    Article  PubMed  CAS  Google Scholar 

  39. Kirzhner, V.M., Korol, A.B., and Nevo, E. (1996) Complex dynamics of multilocus systems subjected to cyclical selection. Proc. Natl. Acad. Sci. USA 93, 6532–6535.

    Article  PubMed  CAS  Google Scholar 

  40. Kirzhner, V.M., Korol, A., and Nevo, E. (1999) Abundant multilocus polymorphisms caused by genetic interaction between species on trait-for-trait basis. J. Theor. Biol. 198, 61–70.

    Article  PubMed  CAS  Google Scholar 

  41. Korol, A.B., Kirzhner, V.M., and Nevo, E. (1998) Dynamics of recombination modifiers caused by cyclical selection: interaction of forced and autoscillations. Genet. Res. 72, 135–147.

    Article  CAS  Google Scholar 

  42. Nevo, E. (1995a) Evolution and extinction, in Encyclopedia of Environmental Biology Vol. 1 (Nierenberg, W., ed.), Academic Press Inc., New York, pp. 717–745.

    Google Scholar 

  43. Nevo, E., Beharav, A., Meyer, R.C., Hackett, C.A., Forster, B.P., Russell, J.R., Handley, L., and Powell, W. (2005) Genomic microsatellite adaptive divergence of wild barley by microclimatic stress in “Evolution Canyon”, Israel. Biol. J. Linn. Soc. 84, 205–224.

    Article  Google Scholar 

  44. Nesbitt, M. and Samuel, D. (1998) Wheat domestication: archaeological evidence. Science 279, 1433.

    Article  CAS  Google Scholar 

  45. Badr, A., Muller, K., Schafer-Pregl, R., El Rabey, H., Effgen, S., Ibrahim, H., Pozzi, C., Rohde, W., and Salamini, R. (2000) On the origin and domestication history of barley. Mol. Biol. Evol. 17, 499–510.

    PubMed  CAS  Google Scholar 

  46. Lev-Yadun, S., Gopher, A., and Abbo, S. (2000) The cradle of agriculture. Science 288, 1602–1603.

    Article  PubMed  CAS  Google Scholar 

  47. Gopher, A., Abbo, S., and Lev-Yadun, S. (2002) The “when”, “where”, and the “why” of the Neolithic revolution in the Levant. Doc. Praehistorica 28, 49–62.

    Google Scholar 

  48. Salamini, F., Ozkan, H., Brandolini, A., Schafer-Pregl, R., and Martin, W. (2002) Genetics and geography of wild cereal domestication in the Near East. Nat. Rev. Genetics 3, 429–441.

    CAS  Google Scholar 

  49. Nevo, E. and Beiles, A. (1989) Genetic diversity of wild emmer wheat in Israel and Turkey: structure, evolution and application in breeding. Theor. Appl. Genet. 77, 421–455.

    Article  Google Scholar 

  50. Nevo, E., Beiles, A., and Zohary, D. (1986) Genetic resources of wild barley in the Near East: structure, evolution and application in breeding. Biol. J. Linn. Soc. 27, 355–380.

    Article  Google Scholar 

  51. Nevo, E. (1983) Genetic resources of wild emmer wheat: structure, evolution and applications in breeding. in Proceeding of the 6th International Wheat Genetic Symposium, Kyoto University, Kyoto, Japan, pp. 421–431.

    Google Scholar 

  52. Nevo, E. (1989) Genetic resources of wild emmer wheat revisited: genetic evolution, conservation and utilization. in Proceedings of the Seventh International Wheat Genetics Symposium, 13–19 July 1989 (Miller T.E. and Koebner R., eds.), Institute of Plant Science Research, Cambridge, pp. 121–126.

    Google Scholar 

  53. Snape, J.W., Nevo, E., Parker, B.B., Leckie, D., and Morgunov, A. (1991a) Herbicide response polymorphism in wild populations of emmer wheat. Heredity 66, 251–257.

    Article  Google Scholar 

  54. Snape, J.W., Leckie, D., Parker, B.B., and Nevo, E. (1991b) The genetical analysis and exploitation of differential responses to herbicides in crop species. in Herbicide Resistance in Weeds and Crops (Casley, J.C., Cussans, G.W., and Atkin, R.K., eds.), Butterworth-Heinemann, Oxford, pp. 305–317.

    Google Scholar 

  55. Cakmak, I., Torun, A., Millet, E., Feldman, M., Fahima, T., Korol, A., Nevo, E., Braun, H.J., and Ozkan, H. (2004) Triticum dicoccoides: an important genetic resource for increasing zinc and iron concerntration in modern cultivated wheat. Soil Sci. Plant Nutr. 50, 1047–1054.

    Article  CAS  Google Scholar 

  56. Peleg, Z., Fahima, T., Abbo, S., Krugman, T., Nevo, E., Yakir, D., and Saranga, Y. (2005) Genetic diversity for drought resistance in wild wheat and its ecogeographical associations. Plant Cell Environ. 28, 176–191.

    Article  Google Scholar 

  57. Uauy, C., Distelfeld, A., Fahima, T., Blechl, A., and Dubcovsky, J. (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 413, 1298–1301.

    Article  Google Scholar 

  58. Moseman, J.G., Nevo, E., and Zohary, D. (1983) Resistance of Hordeum spontaneum collected in Israel to infection with Erysiphe graminis hordei. Crop Sci. 23, 1115–1119.

    Article  Google Scholar 

  59. Moseman, J.G., Nevo, E., El-Morshidy, M.A., and Zohary, D. (1984) Resistance of Triticum dicoccoides to infection with Erysiphe graminis tritici. Euphytica 33, 41–47.

    Article  Google Scholar 

  60. Moseman, J.G., Nevo, E., Gerechter-Amitai, Z.K., El-Morshidy, M.A., and Zohary, D. (1985) Resistance of Triticum dicoccoides collected in Israel to infection with Puccinia recondite tritici. Crop Sci. 25, 262–265.

    Article  Google Scholar 

  61. Fetch, T.G., Steffenson, B.J., and Nevo, E. (2003) Diversity and sources of multiple disease resistance in Horduem spontaneum. Plant Dis. 87, 1439–1448.

    Article  Google Scholar 

  62. Nevo, E. (1987) Plant genetic resources: prediction by isozyme markers and ecology, in Isozymes: Current Topics in Biological Research (Vol. 16). Agriculture, Physiology and Medicine (Rattazi, M., Scandalios, J., and Whitt, G.S., eds.), Alan R. Liss Inc., New York, pp. 247–267.

    Google Scholar 

  63. Suprunova, T., Krugman, T., Fahima, T., Chen, G., Shams, I., Korol, A., and Nevo, E. (2004) Differential expression of dehydrin (Dhn) in response to water stress in resistant and sensitive wild barley (Hordeum spontaneum). Plant Cell Environ. 27, 1297–1308.

    Article  CAS  Google Scholar 

  64. Weining, S., Hu, Y., and Nevo, E. (2003) Toward understanding the molecular mechanism of drought resistance in wild barleys through the identification of nucleic acids polymorphisms in dehydrin genes. (Abstract). Plant and Animal Genome XI Conf. January 11–15, San Diego, CA, pp. 416.

    Google Scholar 

  65. Volis, S., Yakubov, B., Shulgina, E., Ward, D., Zur, V., and Mendlinger, S. (2001) Test for adaptive RAPD variation in population genetic structure of wild barley, Hordeum spontaneum Koch. Biol. J. Linn. Soc. 74, 289–303.

    Google Scholar 

  66. Volis, S., Mendlinger, S., and Ward, D. (2002) Differentiation in populations of Hordeum spontaneum along a gradient of environmental productivity and predictability: life history and local adaptation. Biol. J. Linn. Soc. 77, 479–490.

    Article  Google Scholar 

  67. Weining, S., Xianghong, D., and Nevo, E. (2004) Transforming Arabidopsis with genes from wild barley for the analysis of drought tolerance. (Abstract) Plant and Animal Genome XII Conf. January 10–14, San Diego, CA, pp. 98.

    Google Scholar 

  68. Nevo, E., Lu, Z., and Pavlicek, T. (2006) Global evolutionary strategies across life caused by shared ecological stress: Fact or fancy? Isr. J. Plant Sci. 54, 1–8.

    Article  CAS  Google Scholar 

  69. Nevo, E. (1995b) Asian, African, and European biota meet at “Evolution Canyon”, Israel: local tests of global biodiversity and genetic diversity patterns. Proc. Roy. Soc. Lond. B. 262, 149–155.

    Article  Google Scholar 

  70. Korol, A.B., Rashkovetsky, E., Iliadi, K., and Nevo, E. (2006) Drosophila flies in “Evolution Canyon” as a model for incipient sympatric speciation. Proc. Natl. Acad. Sci. USA 103, 18184–18189.

    Article  PubMed  CAS  Google Scholar 

  71. Miyazaki, S., Nevo, E., Grishkan, I., Ikleman, U., Weinberg, D., and Bohnert, H. (2003) Oxidative stress responses in yeast strains, Saccharomyces cerevisiae, from “Evolution Canyon”, Israel. Monatsh. Chem. 134, 1465–1480.

    CAS  Google Scholar 

  72. Nevo, E., Apelbaum-Elkaher, I., Garty, J., and Beiles, A. (1997) Natural selection causes microscale allozyme diversity in wild barley and lichen at “Evolution Canyon”, Mt. Carmel, Israel. Heredity 78, 373–382.

    Article  Google Scholar 

  73. Owuor, E.D., Fahima, T., Beiles, A., Korol, A.B., and Nevo, E. (1997) Population genetics response to microsite ecological stress in wild barley Hordeum spontaneum. Mol. Ecol. 6, 1177–1187.

    Article  Google Scholar 

  74. Paterson, A.H., Lander, E.S., Hewitt, J.D., Peterson, S., Lincoln, S.E., and Tanksley, S.D. (1988) Resolution of quantitative trait into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335, 721–726.

    Article  PubMed  CAS  Google Scholar 

  75. Soller, M. and Beckmann, J.S. (1988) Genomic genetics and utilization for breeding purposes of genetic variation between populations, in Proc. 2nd Int. Conf. Quant. Genet. (Weir, B.S., Eisen, D.J., Goodman, M.M., and Namkoog, G., eds.), Sinauer, Sunderland, pp. 161–188.

    Google Scholar 

  76. Sikorski, J. and Nevo, E. (2005) Adaptation and incipient sympatric speciation of Bacillus simplex under microclimatic contrast at “Evolution Canyons” I and II, Israel. Proc. Natl. Acad. Sci. USA 102, 15924–15929.

    Article  PubMed  CAS  Google Scholar 

  77. Lamb, B., Kozlakidis, Z., and Saleem, M. (2000) Inter-strain cross-fertility tests on cultures from Israel, America and Canada in the homothallic fungus, Sordaria fimicola. Fungal Genet. News 47, 69–71.

    Google Scholar 

  78. Gutterman, Y. and Nevo, E. (1994) Germination comparison study of Hordeum spontaneum regionally and locally in Israel: a population in the Negev Desert highlands and from two opposing slopes on the Mediterranean Mount Carmel. Barley Genet. Newslet. 22, 18–19.

    Google Scholar 

  79. Lavie, B., Stow, V., Krugman, T., Beiles, A., and Nevo, E. (1994) Fitness in wild barley from two opposing slopes of a Mediterranean microsite at Mt. Carmel, Israel. Barley Genet. Newslet. 23, 12–14.

    Google Scholar 

  80. Li, Y.C., Korol, A.B., Fahima, T., and Nevo, E. (2004) Microsatellites within genes: structure, function, and evolution. Mol. Biol. Evol. 6, 991–1007.

    Article  Google Scholar 

  81. Kuang, H., Woo, S.S., Meyers, B., Nevo, E., and Michelmore, R.W. (2004) Multiple-genetic processes result in heterogeneous rates of evolution within the major cluster of disease resistance genes in lettuce. Plant Cell 16, 2870–2894.

    Article  PubMed  CAS  Google Scholar 

  82. Kuang, H., Ochoa, O.E., Nevo, E., and Michelmore, R.W. (2006) The disease resistance gene Dm3 is infrequent in natural populations of Lactuca serriola due to deletions and frequent gene conversions. Plant J. 47, 38–48.

    Article  PubMed  CAS  Google Scholar 

  83. Sicard, D., Woo, S.S., Arroyo-Garcia, R., Ochoa, O., Nguyen, D., Korol, A.B., Nevo, E., and Michelmore, R. (1999) Molecular diversity at the major cluster of disease resistance genes in cultivated and wild Lactuca spp. Theor. Appl. Genet. 99, 405–418.

    Article  CAS  Google Scholar 

  84. Beharav, A., Lewinsohn D., Lebeda, A., and Nevo, E. (2006) New wild Lactuca genetic resources with resistance against Bremia lactucae. Genet. Resour. Crop Evol. 53, 467–474.

    Article  Google Scholar 

  85. Scott, R.J. and Spielman, M. (2006) Deeper into the maize: new insights into genomic imprinting in plants. BioEssays 28, 1167–1171.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eviatar Nevo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Nevo, E. (2009). Ecological Genomics of Natural Plant Populations: The Israeli Perspective. In: Gustafson, J., Langridge, P., Somers, D. (eds) Plant Genomics. Methods in Molecular Biology™, vol 513. Humana Press. https://doi.org/10.1007/978-1-59745-427-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-427-8_17

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-997-0

  • Online ISBN: 978-1-59745-427-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics