Skip to main content

Molecular Plant Breeding: Methodology and Achievements

  • Protocol
  • First Online:
Plant Genomics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 513))

Summary

The progress made in DNA marker technology has been remarkable and exciting in recent years. DNA markers have proved valuable tools in various analyses in plant breeding, for example, early generation selection, enrichment of complex F1s, choice of donor parent in backcrossing, recovery of recurrent parent genotype in backcrossing, linkage block analysis and selection. Other main areas of applications of molecular markers in plant breeding include germplasm characterization/fingerprinting, determining seed purity, systematic sampling of germplasm, and phylogenetic analysis. Molecular markers, thus, have proved powerful tools in replacing the bioassays and there are now many examples available to show the efficacy of such markers. We have illustrated some basic concepts and methodology of applying molecular markers for enhancing the selection efficiency in plant breeding. Some successful examples of product developments of molecular breeding have also been presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gur, A. and Zamir, D. (2004) Unused natural variation can lift yield barriers in plant breeding. PLoS Biol. 2, e245.

    Article  PubMed  Google Scholar 

  2. Tanksley, S.D., Young, N.D., Paterson, A.H., and Bonierballe, M.W. (1989) RFLP mapping in plant breeding: new tools for an old science. BioTechnology 7, 257–264.

    Article  CAS  Google Scholar 

  3. Phillips, R.L. and Vasil, I.K. (eds.) (2001) DNA-Based Markers in Plants (2nd ed). Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  4. Rafalski, J.A. and Tingey, S.V. (1993) Genetic diagnostics in plant breeding: RAPDs, microsatellites and machines. Trends Genet. 9, 275–280.

    Article  PubMed  CAS  Google Scholar 

  5. Azhaguvel, P., et-al (2006) Methodological advancement in molecular markers to delimit the gene(s) for crop improvement, in Floriculture, Ornamental and Plant Biotechnology: Advances and Topical Issues (Vol. I) (Teixeira da Silva, J.A., ed.), Global Science Books, London, pp. 460–469.

    Google Scholar 

  6. Gupta, P.K. and Varshney, R.K. (2004) Cereal genomics: an overview, in Cereal Genomics (Gupta, P.K. and Varshney, R.K., eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 1–18.

    Google Scholar 

  7. Jahoor, A., Eriksen, L., and Backes, G. (2004) QTLs and genes for disease resistance in barley and wheat, in Cereal genomics (Gupta, P.K. and Varshney, R. K., eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 199–252.

    Google Scholar 

  8. Li, W. and Gill, B.S. (2004) Genomics for cereal improvement, in Cereal genomics (Gupta, P.K. and Varshney, R.K., eds.). Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 585–634.

    Google Scholar 

  9. Tuberosa, R. and Salvi, S. (2004) QTLs and genes for tolerance to abiotic stress in cereals, in Cereal genomics (Gupta, P.K. and Varshney, R.K., eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 253–315.

    Google Scholar 

  10. Varshney, R.K., Hoisington, D.A., and Tyagi, A.K. (2006) Advances in cereal genomics and applications in crop breeding. Trends Biotechnol. 24, 490–499.

    Article  PubMed  CAS  Google Scholar 

  11. Toojinda, T., Baird, E., Booth, A., Broers, L., Hayes, P., Powell, W., Thomas, W., Vivar, H., and Young G. (1998) Introgression of quantitative trait loci (QTLs) determining stripe rust resistance in barley: an example of marker assisted line development. Theor. Appl. Genet. 96, 123–131.

    Article  CAS  Google Scholar 

  12. Langridge, P. (2005) Molecular breeding of wheat and barley, in In the Wake of Double Helix: From the Green Revolution to the Gene Revolution (Tuberosa R., Phillips, R.L., and Gale, M., eds.), Avenue Media, Bologna, Italy, pp. 279–286.

    Google Scholar 

  13. Toenniessen, G.H., O'Toole, J.C., and DeVries, J. (2003) Advances in plant biotechnology and its adoption in developing countries. Curr. Opin. Plant Biol. 6, 191–198.

    Article  PubMed  Google Scholar 

  14. Dreher, K., Morris M., and Khairallah, M. (2000) Is marker assisted selection cost-effective compared to conventional plant breeding methods? The case of quality protein maize, in Proc 4th Annu Conf Intern Consor on Agricultural Biotechnology Research (ICABR), The Economics of Agricultural Biotechnology, Ravello, Italy.

    Google Scholar 

  15. Jefferies, S.P., King, B.J., Barr, A.R., Warner, P., Logue, S.J., and Langridge, P. (2003) Marker-assisted backcross introgression of the yd2 gene conferring resistance to barley yellow dwarf virus in barley. Plant Breed. 122, 52–56.

    Article  CAS  Google Scholar 

  16. Friedt, W. and Ordon, F. (2007) Molecular markers for gene pyramiding and disease resistance breeding in barley, in Genomics Assisted Crop Improvement (Varshney R.K. and Tuberosa, R.T., eds.), Springer, The Netherlands, (Vol. II) pp. 97–120.

    Google Scholar 

  17. Koebner, R.M.D. (2004) Marker assisted selection in the cereals: the dream and the reality, in Cereal Genomics, (Gupta P.K. and Varshney, R.K., eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 317–329.

    Google Scholar 

  18. Sanchez, A.C., Brar, D.S., Huang, N., Li, Z. K., and Khush, G.S. (2000) Sequence-tagged site marker-assisted selection for three bacterial blight resistance genes in rice. Crop Sci. 40, 792–797.

    Article  CAS  Google Scholar 

  19. Singh, S., Sidhu, J.S., Huang, N., Vikal, Y., Li, Z., Brar, D.S., Dhaliwal, H., and Khush, G.S. (2001) Pyramiding three bacterial blight resistance genes (xa-5, xa-13 and Xa21) using marker-assisted selection into indica rice cultivar PR106. Theor. Appl. Genet. 102, 1011–1015.

    Article  CAS  Google Scholar 

  20. He, Y., Li, X., Zhang, J., Jiang, G., Liu, S., Chen, S., Tu, J., Xu, C., and Zhang, Q. (2004) Gene pyramiding to improve hybrid rice by molecular-marker techniques, in New Directions for a Diverse Planet: Proc. 4th Intern. Crop Sci. Cong. Brisbane, Australia. (http://www.cropscience.org.au/icsc2004/)

    Google Scholar 

  21. Narayanan, N.N., Baisakh, N., Vera Cruz, C.M., Gnanamanickam, S.S., Datta, K., and Datta, S.K. (2002) Molecular breeding for the development of blast and bacterial blight resistance in rice cv. IR50. Crop Sci. 42, 2072–2079.

    Article  CAS  Google Scholar 

  22. Joseph, M., Gopalakrishnan, S., Sharma, R.K., Singh, V.P., Singh, A.K., Singh, N.K., and Mohapatra, T. (2004) Combining bacterial blight resistance and Basmati quality characteristics by phenotypic and molecular-marker assisted selection in rice. Mol. Breed. 13, 377–387.

    Article  CAS  Google Scholar 

  23. Rostoks, N., Borevitz, J.O., Hedley, P.E., Russell, J., Mudie, S., Morris, J., Cardle, L., Marshall, D.F., and Waugh, R. (2005) Single-feature polymorphism discovery in the barley transcriptome. Genome Biol. 6, R54.

    Article  PubMed  Google Scholar 

  24. Rostoks N., Schmierer, D., Mudie, S., Drader, T., Brueggeman, R., Caldwell, D.G., Waugh, R., and Kleinhofs, A. (2006) Barley necrotic locus nec1 encodes the cyclic nucleotide-gated ion channel 4 homologous to the Arabidopsis HLM1. Mol. Genet. Genomics 275, 159–168.

    Article  PubMed  CAS  Google Scholar 

  25. Varshney, R.K., Graner, A., and Sorrells, M.E. (2005b) Genomics-assisted breeding for crop improvement. Trends Plant Sci. 10, 621–630.

    Article  CAS  Google Scholar 

  26. Andersen, J.R. and Lübberstedt, T. (2003) Functional markers in plants. Trends Plant Sci. 8, 554–560.

    Article  PubMed  CAS  Google Scholar 

  27. Varshney, R.K., Graner, A., and Sorrells, M.E. (2005a) Genic microsatellite markers in plants: features and applications. Trends Biotechnol. 23, 48–55.

    Article  CAS  Google Scholar 

  28. Michelmore, R.W., Paran, I., and Kesseli, R.V. (1991) Identification of markers linked to disease resistance genes by bulked-segregant analysis; a rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci. USA 88, 9828–9832.

    Article  PubMed  CAS  Google Scholar 

  29. Young, N.D. (1994) Constructing a plant genetic linkage map with DNA markers, in DNA-Based Markers in Plants (Vasil, I.K. and Phillips, R.L., eds.), Kluwer, Dordrecht, pp. 39–57.

    Google Scholar 

  30. Mohan, M., Suresh, N., Bhagwat, A., Krishna, T.G., Yano, M., Bhatia, C.R., and Sasaki, T. (1997) Genome mapping, molecular and makers and marker-assisted selection in crop plants. Mol. Breed. 3, 87–103.

    Article  CAS  Google Scholar 

  31. Collard, B.C.Y., Jahufer, M.Z.Z., Brouwer, J.B., and Pang, E.C.K. (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142, 169–196.

    Article  CAS  Google Scholar 

  32. Camus-Kulandaivelu, L., Veyrieras, J.B., Madur, D., Combes, V., Fourmann, M. Barraud, S., Dubreuil, P., Gouesnard, B., Manicacci, D., and Charcosset, A. (2006) Maize adaptation to temperate climate: relationship between population structure and polymorphism in the Dwarf8 gene. Genetics 172, 2449–2463.

    Article  PubMed  CAS  Google Scholar 

  33. Tanksley, S.D. (1993) Mapping polygenes. Annu. Rev. Genet. 27, 205–233.

    Article  PubMed  CAS  Google Scholar 

  34. Liu, B. (1998) Statistical Genomics: Linkage, Mapping and QTL Analysis. CRC Press, Boca Raton.

    Google Scholar 

  35. Nelson, J.C. (1997) Qgene – software for marker-based genomic analysis and breeding. Mol. Breed. 3, 239–245.

    Article  CAS  Google Scholar 

  36. Manly, K.F., Cudmore R.H., and Meer, J.M. (2001) Map Manager QTX, cross-platform software for genetic mapping. Mamm. Genome 12, 930–932.

    Article  PubMed  CAS  Google Scholar 

  37. Lincoln, S., Daly, M., and Lander, E. (1993a) Constructing genetic linkage maps with MAPMAKER/EXP. Version 3.0. Whitehead Institute for Biomedical Research Technical Report, 3rd ed.

    Google Scholar 

  38. Lincoln, S., Daly M., and Lander, E. (1993b) Mapping genes controlling quantitative traits using MAPMAKER/QTL. Version 1.1. Whitehead Institute for Biomedical Research Technical Report, 2nd ed.

    Google Scholar 

  39. Basten, C.J., Weir, B.S., and Zeng, Z.B. (1994) Zmap-a QTL cartographer, in Proceedings of the 5th World Congress on Genetics Applied to Livestock Production: Computing Strategies and Software, Guelph, Ontario, Canada. (Smith J.S.G.C., Benkel, B.J., Chesnais, W.F., Gibson, J.P., Kennedy, B.W., and Burnside, E.B., eds.), Published by the Organizing Committee, 5th World Congress on Genetics Applied to Livestock Production.

    Google Scholar 

  40. Utz, H. and Melchinger, A. (1996) PLABQTL: A program for composite interval mapping of QTL. J. Quant. Trait Loci 2. http://probe.nalusda.gov:8000/otherdocs/jqtl

  41. Pritchard, J.K. (2001) Deconstructing maize population structure. Nat. Genet. 28, 203–204.

    Article  PubMed  CAS  Google Scholar 

  42. Pritchard, J.K. Stephens, M., Rosenberg, N.A., and Donnelly, P. (2000) Association mapping in structured populations. Am. J. Hum. Genet. 67, 170–181.

    Article  PubMed  CAS  Google Scholar 

  43. Thornsberry, J.M., Goodman, M.M., Doebley, J., Kresovich, S., Nielsen, D. et-al (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat. Genet. 28, 286–289.

    Article  PubMed  CAS  Google Scholar 

  44. Gupta, P.K., Varshney, R., Sharma, P., and Ramesh, B. (1999) Molecular markers and their applications in wheat breeding. Plant Breed. 118, 369–390.

    Article  CAS  Google Scholar 

  45. Langridge, P., Lagudah, E., Holton, T., Appels, R., Sharp, P., and Chalmers, K. (2001) Trends in genetic and genome analyses in wheat: a review. Aust. J. Agric. Res. 52, 1043–1077.

    Article  CAS  Google Scholar 

  46. Gupta, P.K., Varshney, R.K., and Prasad, M. (2002) Molecular markers: principles and methodology, in Molecular Techniques in Crop Improvement (Jain, S.M., Brar, D.S., and Ahloowalia, B.S., eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 9–54.

    Google Scholar 

  47. Somers, D.J. (2004) Molecular marker systems and their evaluation for cereal genetics, in Cereal Genomics (Gupta, P.K. and Varshney, R.K., eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 19–34.

    Google Scholar 

  48. Gupta, P.K. and Varshney, R.K. (2000) The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113, 163–185.

    Article  CAS  Google Scholar 

  49. Flint-Garcia, S.A., Thornsberry, J.M., and Buckler, E.S. (2003) Structure of linkage disequilibrium in plants. Ann. Rev. Plant Biol. 54, 357–374.

    Article  CAS  Google Scholar 

  50. Ersoz, E.S., Yu, J., and Buckler, E.S. (2007) Applications of linkage disequilibrium and association mapping in crop plants, in Genomics Assisted Crop Improvement (Varshney R.K. and Tuberosa, R.T., eds.), Springer, The Netherlands (Vol. I). pp. 97–120.

    Google Scholar 

  51. Buckler, E.S. and Thornsberry, J. (2002) Plant molecular diversity and applications to genomics. Curr. Opin. Plant Biol. 5, 107–111.

    Article  PubMed  CAS  Google Scholar 

  52. Yu, J. and Buckler, E.S. (2006) Genetic association mapping and genome organization of maize. Curr. Opin. Biotechnol. 17, 155–160.

    Article  PubMed  CAS  Google Scholar 

  53. Lander, E. and Botstein, D. (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121, 185–199.

    PubMed  CAS  Google Scholar 

  54. Jansen, R. and Stam, P. (1994) High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136, 1447–1455.

    PubMed  CAS  Google Scholar 

  55. Long, A.D. and Langley, C.H. (1999) The power of association studies to detect the contribution of candidate genetic loci to variation in complex traits. Genome Res. 9, 720–731.

    PubMed  CAS  Google Scholar 

  56. Wang, Y. and Rannala, B. (2005) In silico analysis of disease-association mapping strategies using the coalescent process and incorporating ascertainment and selection. Am. J. Hum. Genet. 76, 1066–1073.

    Article  PubMed  CAS  Google Scholar 

  57. Hill, W.G. and Robertson, A. (1968) Linkage disequilibrium in finite populations. Theor. Appl. Genet. 38, 226–231.

    Article  Google Scholar 

  58. Lewontin, R.C. (1988) On measures of gametic disequilibrium. Genetics 120, 849–852.

    PubMed  CAS  Google Scholar 

  59. Wright, S.I. and Gaut, B.S. (2005) Molecular population genetics and the search for adaptive evolution in plants. Mol. Biol. Evol. 22, 506–519.

    Article  PubMed  CAS  Google Scholar 

  60. Bamshad, M., Wooding, S., Salisbury, B.A., and Stephens, J.C. (2004) Deconstructing the relationship between genetics and race. Nat. Rev. Genet. 5, 598–609.

    Article  PubMed  CAS  Google Scholar 

  61. Devlin, B., Bacanu, S.A., and Röder, K., (2004) Genomic control to the extreme. Nat. Genet. 36, 1129–1130.

    Article  PubMed  CAS  Google Scholar 

  62. Devlin, B. and Roeder, K. (1999) Genomic control for association studies. Biometrics 55, 997–1004.

    Article  PubMed  CAS  Google Scholar 

  63. Devlin, B., Röder, K., and Wasserman, L. (2001) Genomic control, a new approach to genetic-based association studies. Theor. Popul. Biol. 60, 155–166.

    Article  PubMed  CAS  Google Scholar 

  64. Yu, J., Pressoir, G., Briggs, W.H., Vroh, Bi, I., Yamasaki, M., Doebley, J., Mcmullen, M., Gaut, B., Holland, J.J., Kresovich, S., and Buckler E. (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat. Genet. 38, 203–208.

    Article  PubMed  CAS  Google Scholar 

  65. Price, A.L., Patterson, N.J., Plenge, R.M., Weinblatt, M.E., Shadick, N.A., and Reich, D. (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Authors (RKV, DAH, SNN) are grateful to Generation Challenge Programme (GCP) of Consultative Group on International Agriculture Research (CGIAR), Indo–US Agricultural Knowledge Initiative (AKI), and National Fund of Indian Council of Agricultural Research (ICAR) and Department of Biotechnology (DBT), Government of India for financial support of their research. SNN is thankful to councl of Scientific and Industrail Research (CSIR), Government of India for Sponsoring fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev K. Varshney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Varshney, R., Hoisington, D., Nayak, S., Graner, A. (2009). Molecular Plant Breeding: Methodology and Achievements. In: Gustafson, J., Langridge, P., Somers, D. (eds) Plant Genomics. Methods in Molecular Biology™, vol 513. Humana Press. https://doi.org/10.1007/978-1-59745-427-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-427-8_15

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-997-0

  • Online ISBN: 978-1-59745-427-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics