Skip to main content

Investigating the Mode of Action of Proline-Rich Antimicrobial Peptides Using a Genetic Approach: A Tool to Identify New Bacterial Targets Amenable to the Design of Novel Antibiotics

  • Protocol
Peptide-Based Drug Design

Part of the book series: Methods In Molecular Biology™ ((MIMB,volume 494))

Summary

The proline-rich antimicrobial peptides (PRPs) are considered to act by crossing bacterial membranes without altering them and then binding to, and functionally modifying, one or more specific targets. This implies that they can be used as molecular hooks to identify the intracellular or membrane proteins that are involved in their mechanism of action and that may be subsequently used as targets for the design of novel antibiotics with mechanisms different from those now in use. The targets can be identified by using peptide-based affinity columns or via the genetic approach described here. This approach depends on chemical mutagenesis of a PRP-susceptible bacterial strain to select mutants that are either more resistant or more susceptible to the relevant peptide. The genes conferring the mutated phenotype can then be isolated and identified by subcloning and sequencing. In this manner, we have currently identified several genes that are involved in the mechanism of action of these peptides, including peptide-transport systems or potential resistance factors, which can be used or taken into account in drug design efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brogden, K. A. (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Natl. Rev. Microbiol. 3, 238–250.

    Google Scholar 

  2. Brown, K. L. and Hancock, R. E. (2006) Cationic host defense (antimicrobial) peptides. Curr. Opin. Immunol. 18, 24–30.

    Article  CAS  PubMed  Google Scholar 

  3. Hancock, R. E. and Sahl, H. G. (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Natl. Biotechnol. 24, 1551–1557.

    Article  CAS  Google Scholar 

  4. Shai, Y. (2002) Mode of action of membrane active antimicrobial peptides. Biopolymers 66, 236–248.

    Article  CAS  PubMed  Google Scholar 

  5. Pag, U. and Sahl, H. G. (2002) Multiple activities in lantibiotics – models for the design of novel antibiotics? Curr. Pharm. Des. 8, 815–833.

    Article  CAS  PubMed  Google Scholar 

  6. Gennaro, R., Zanetti, M., Benincasa, M., Podda, E. and Miani, M. (2002) Pro-rich antimicrobial peptides from animals: structure, biological functions and mechanism of action. Curr. Pharm. Des. 8, 763–778.

    Article  CAS  PubMed  Google Scholar 

  7. Otvos, L., Jr. (2002) The short proline-rich antibacterial peptide family. Cell Mol. Life Sci. 59, 1138–1150.

    Article  CAS  PubMed  Google Scholar 

  8. Podda, E., Benincasa, M., Pacor, S., Micali, F., Mattiuzzo, M., Gennaro, R. and Scocchi, M. (2006) Dual mode of action of Bac7, a proline-rich antibacterial peptide. Biochim. Biophys. Acta 1760, 1732–1740.

    CAS  PubMed  Google Scholar 

  9. Cudic, M. and Otvos, L., Jr. (2002) Intracellular targets of antibacterial peptides. Curr. Drug Targets 3, 101–106.

    Article  CAS  PubMed  Google Scholar 

  10. Otvos, L., Jr., Rogers, M. E., Consolvo, P. J., Condie, B. A., Lovas, S., Bulet, P. and Blaszczyk-Thurin, M. (2000) Interaction between heat shock proteins and antimicrobial peptides. Biochemistry 39, 14150–14159.

    Article  CAS  PubMed  Google Scholar 

  11. Kragol, G., Lovas, S., Varadi, G., Condie, B. A., Hoffmann, R. and Otvos, L., Jr. (2001) The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. Biochemistry 40, 3016–3026.

    Article  CAS  PubMed  Google Scholar 

  12. Boman, H. G., Agerberth, B. and Boman, A. (1993) Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect. Immun. 61, 2978–2984.

    CAS  PubMed  Google Scholar 

  13. Shi, Y., Cromie, M. J., Hsu, F. F., Turk, J. and Groisman, E. A. (2004) PhoP-regulated Salmonella resistance to the antimicrobial peptides magainin 2 and polymyxin B. Mol. Microbiol. 53, 229–241.

    Article  CAS  PubMed  Google Scholar 

  14. Mattiuzzo, M., Bandiera, A., Gennaro, R., Benincasa, M., Pacor, S., Antcheva, N. and Scocchi, M. (2007) Role of the Escherichia coli SbmA in the antimicrobial activity of proline-rich peptides. Mol. Microbiol. 66, 151–163.

    Article  CAS  PubMed  Google Scholar 

  15. Tossi, A., Scocchi, M., Zanetti, M., Gennaro, R., Storici, P. and Romeo, D. (1997) An approach combining rapid cDNA amplification and chemical synthesis for the identification of novel, cathelicidin-derived, antimicrobial peptides. Methods Mol. Biol. 78, 133–150.

    CAS  PubMed  Google Scholar 

  16. Miller, J. H. (1992) A Short Course in Bacterial Genetics. A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria. Volume 1. Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  17. Sambrook, J. and Russell, D. W. (2001) Molecular Cloning: a Laboratory Manual, 3rd ed. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  18. Chen, W. P. and Kuo, T. T. (1993) A simple and rapid method for the preparation of gram-negative bacterial genomic DNA. Nucleic Acids Res. 21, 2260.

    Article  CAS  PubMed  Google Scholar 

  19. Dower, W. J., Miller, J. F. and Ragsdale, C. W. (1988) High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 16, 6127–6145.

    Article  CAS  PubMed  Google Scholar 

  20. Benincasa, M., Scocchi, M., Podda, E., Skerlavaj, B., Dolzani, L. and Gennaro, R. (2004) Antimicrobial activity of Bac7 fragments against drug-resistant clinical isolates. Peptides 25, 2055–2061.

    Article  CAS  PubMed  Google Scholar 

  21. Lavina, M., Pugsley, A. P. and Moreno, F. (1986) Identification, mapping, cloning and characterization of a gene (sbmA) required for microcin B17 action on Escherichia coli K12. J. Gen. Microbiol. 132, 1685–1693.

    CAS  PubMed  Google Scholar 

  22. Salomon, R. A. and Farias, R. N. (1995) The peptide antibiotic microcin 25 is imported through the TonB pathway and the SbmA protein. J. Bacteriol. 177, 3323–3325.

    CAS  PubMed  Google Scholar 

  23. Yorgey, P., Lee, J., Kordel, J., Vivas, E., Warner, P., Jebaratnam, D. and Kolter, R. (1994) Posttranslational modifications in microcin B17 define an additional class of DNA gyrase inhibitor. Proc. Natl. Acad. Sci. U S A 91, 4519–4523.

    Article  CAS  PubMed  Google Scholar 

  24. Locher, K. P., Lee, A. T. and Rees, D. C. (2002) The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science 296, 1091–1098.

    Article  CAS  PubMed  Google Scholar 

  25. de Cristobal, R. E., Solbiati, J. O., Zenoff, A. M., Vincent, P. A., Salomon, R. A., Yuzenkova, J., Severinov, K. and Farias, R. N. (2006) Microcin J25 uptake: His5 of the MccJ25 lariat ring is involved in interaction with the inner membrane MccJ25 transporter protein SbmA. J. Bacteriol. 188, 3324–3328.

    Article  PubMed  Google Scholar 

  26. Meacham, K. J., Zhang, L., Foxman, B., Bauer, R. J. and Marrs, C. F. (2003) Evaluation of genotyping large numbers of Escherichia coli isolates by enterobacterial repetitive intergenic consensus-PCR. J. Clin. Microbiol. 41, 5224–5226.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Scocchi, M., Mattiuzzo, M., Benincasa, M., Antcheva, N., Tossi, A., Gennaro, R. (2008). Investigating the Mode of Action of Proline-Rich Antimicrobial Peptides Using a Genetic Approach: A Tool to Identify New Bacterial Targets Amenable to the Design of Novel Antibiotics. In: Otvos, L. (eds) Peptide-Based Drug Design. Methods In Molecular Biology™, vol 494. Humana Press. https://doi.org/10.1007/978-1-59745-419-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-419-3_9

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-990-1

  • Online ISBN: 978-1-59745-419-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics