Skip to main content

Peptidomimetics: Fmoc Solid-Phase Pseudopeptide Synthesis

  • Protocol
Peptide-Based Drug Design

Part of the book series: Methods In Molecular Biology™ ((MIMB,volume 494))

Summary

Peptidomimetic modifications or cyclization of linear peptides are frequently used as attractive methods to provide more conformationally constrained and thus more stable and bioactive peptides. Among numerous peptidomimetic approaches described recently in the literature, particularly attractive are pseudopeptides or peptide bond surrogates in which peptide bonds have been replaced with other chemical groups. In these peptidomimetics the amide bond surrogates possess three-dimensional structures similar to those of natural peptides, yet with significant differences in polarity, hydrogen bonding capability, and acid-base character. The introduction of such modifications to the peptide sequence is expected to completely prevent protease cleavage of amide bond and significantly improve peptides’ metabolic stability.

In this chapter we consider Fmoc solid-phase synthesis of peptide analogs containing the amide surrogate that tend to be isosteric with the natural amide. This includes synthesis of peptidosulfonamides, phosphonopeptides, oligoureas, depsides, depsipeptides, and peptoids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marx, V. (2005) Watching peptide drugs grow up. C&EN, 83, 17–24.

    Google Scholar 

  2. Adessi, C., and Soto, C. (2002) Converting a peptide into drug: strategies to improve stability and bioavailability. Curr. Med. Chem. 9, 963–978.

    Article  CAS  PubMed  Google Scholar 

  3. Sawyer, T. K. (2000) Peptidomimetic and nonpeptide drug discovery: chemical nature and biological targets, in Peptide and Protein Drug Analysis (R. E. Reid, ed.), Marcel Dekker, New York, pp. 81–115.

    Google Scholar 

  4. Davies, J. S. (2003) The cyclization of peptides and depsipeptides. J. Pept. Sci. 9, 471–501.

    Article  CAS  PubMed  Google Scholar 

  5. Lambert, J. N., Mitchell, J. P., and Roberts, K. D. (2001) The synthesis of cyclic peptides. J. Chem. Soc Perkin Trans. 1, 471–484.

    Article  Google Scholar 

  6. Li, P., and Roller, P. P. (2002) Cyclization strategies in peptide derived drug design. Curr. Top. Med. Chem. 2, 325–341.

    Article  CAS  PubMed  Google Scholar 

  7. Blackburn, C., and Kates, S. A. (1997) Solid-phase synthesis of cyclic homodetic peptides. Methods Enzymol . 289, 175–198.

    Article  CAS  PubMed  Google Scholar 

  8. Hruby, V. J., and Bonner, G. G. (1994) Design of novel synthetic peptides including cyclic conformationally and topographically constrained analogs. Methods. Mol. Biol. 35, 201–240.

    CAS  PubMed  Google Scholar 

  9. Kates, S. A., Sole, N. A., Albericio, F., and Barany, G. (1994) Solid-phase synthesis of cyclic peptides, in Peptides: Design Synthesis and Biological Activity, Birkhauser, Boston, pp. 39–59.

    Google Scholar 

  10. Ahn, J. M., Boyle, N. A., MacDonald, M. T., and Janda, K. D. (2002), Peptidomimetics and peptide backbone modification. Mini Rev. Med. Chem., 2,463–473.

    Article  CAS  PubMed  Google Scholar 

  11. Goodman, M., Felix, A., Moroder, L., and Toniolo, C., eds. (2004) Synthesis of Peptides and Peptidomimetics, Thieme, Stuttgart.

    Google Scholar 

  12. Spatola, A. F. (1983) Peptide backbone modifications in chemistry and biochemistry of amino acids, in Peptides and Proteins (Weinstein, B., ed.), Marcel Dekker, New York, pp. 267–357.

    Google Scholar 

  13. Radkiewicz, J., McAllister M. A., Goldstein, E., and Houk, K. N. (1998) A theoretical investigation of phosphonoamidates and sulfonoamides as protease transition state isosteres. J. Org. Chem. 63, 1419–1428.

    Article  CAS  Google Scholar 

  14. Moree, W. J., Schouten, A., Kroon, J., and Liskamp, R. M. J. (1995) Peptides containing the sulfonamide transition-state isostere: synthesis and structure ofN-acetyl-taryl-L-proline methylamide. Int. J. Pept. Prot. Res. 45, 501–507.

    Article  CAS  Google Scholar 

  15. Paik, S., and White, E. H. (1996) α-Aminosulfonopeptides as possible functional analogs of penicillin; evidence for their extreme instability. Tetrahedron 52,503–5318.

    Article  Google Scholar 

  16. Liskamp, R. M. J., and Kruijtzer A. W. (2004) Peptide transformastion leading to peptide-peptidosulfonamide hybrids and oligo peptidosulfonamides. Mol. Divers., 8, 79–87.

    Article  CAS  PubMed  Google Scholar 

  17. De Jong, R., Rijkers, D. T. S., and Liskamp, R. M. J. (2002) Automated solid-phase synthesis and structural investigation of β-peptidosulfonamides and β-peptidosulfonamide/β-peptide hybrids: β-peptidosulfonamide and β-peptide foldamers are two of a different kind. Helv. Chim. Acta 85, 4230–4243.

    Article  Google Scholar 

  18. De Bont, D. B. A., Dijkstra, G. D. H., Den Hartog, J. A. J., and Liskamp, R. M. J. (1996) Solid-phase synthesis of peptidosulfonamide containing peptides derived from Leu-enkephalin. Bioorg. Med. Chem. Lett. 6, 3035–3040.

    Article  Google Scholar 

  19. De Bont, D. B. A., Sliedregt, K. M., Hofmeyer, L. J. F., and Liskamp, R. M. J. (1999) Increased stability of peptidosulfonamide peptidomimetics towards protease catalyzed degradation. Bioorg. Med. Chem. 7, 1043–1047.

    Article  PubMed  Google Scholar 

  20. Moree, W. J., Vand der Marel, G. A., and Liskamp R. M. J. (1995) Synthesis of peptidosulfinamides and peptidosulfonamides: peptidomimetics containing the sulfinamide or sulfonamide transition-state isostere. J. Org. Chem. 60, 5157–5169.

    Article  CAS  Google Scholar 

  21. Humljan, J., Kotnik, M., Boniface, A., et al. (2006) A new approach towards peptidosulfonamides: synthesis of potential inhibitors of bacterial peptidoglycan biosynthesis enzymed MurD and MurE. Tetrahedron 62, 10980–10899.

    Article  CAS  Google Scholar 

  22. Humljan, J., and Gobec, S. (2005) Synthesis of N-phthalimido β-aminoethanesulfonyl chlorides: the use of thionyl chloride for a simple and efficient synthesis of new peptidosulfonamide building blocks. Tetrahedron Lett. 46, 4069–4072.

    Article  CAS  Google Scholar 

  23. Brouwer, A. J., Monnee, M. C. F., and Liskamp R. M. J. (2000) An efficient synthesis of N-protected β-aminoethanesulfonyl chlorides: versatile building blocks for the synthesis of oligopeptidosulfonamides. Synthesis, 1579–1584.

    Google Scholar 

  24. Monnee, M. C. F., Marijne, M. F., Brouwer, A. J., and Liskamp R. M. J. (2000) A practical solid phase synthesis of oligopeptidesulfonamide foldamers. Tetrahedron Lett. 41, 7991–7995.

    Article  CAS  Google Scholar 

  25. Van Ameijde, J., and Liskamp R. M. J. (2000) Peptidomimetic building blocks for the synthesis of sulfonamide peptoids. Tetrahedron Lett. 41, 1103–1106.

    Article  Google Scholar 

  26. Gennari, C., Gude, M., Potenza, D., and Piarulli, U. (1998) Hydrogen-bonding donor/acceptor scales in β-sulfonamidopeptides. Chem. Eur. J. 4, 1924–1931.

    Article  CAS  Google Scholar 

  27. De Bont, D. B. A., Moree, W. J., and Liskamp, R. M. J. (1996) Molecular diversity of peptidomimetics: approaches to the solid-phase synthesis of peptidosulfonamides. Bioorg. Med. Chem. 4, 667–672.

    Article  PubMed  Google Scholar 

  28. Rodriguez, M., Llinares, M., Doulut, S., Heitz, A., and Martinez, J. (1991) A facile synthesis of chiral N-protected β-amino alcohols. Tetrahedron Lett. 32, 923–926.

    Article  CAS  Google Scholar 

  29. Krchnak, V., Vagner, J., and Lebl, M. (1988) Noninvasive continuous monitoring of solid-phase peptide synthesis by acid-base indicator. Int. J. Pept. Protein Res. 32, 415–416.

    Article  CAS  PubMed  Google Scholar 

  30. Bartlett, P. A., Hanson, J. E., Morgan, B. P., and Ellsworth, B. A., (2004) Synthesis of peptides with phosphorus-containing amide bond replacements, in Synthesis of Peptides and Peptidomimetics, 4th ed. (Goodman, M., Felix, A., Moroder, L., and Toniolo, C., eds.), Thieme, Stuttgart, pp. 492–528.

    Google Scholar 

  31. Palacios, F., Alonso, C., and de los Santos, J. (2004) β-Phosphono- and phosphinopeptides derived from β-amino-phosphonic and phosphinic acids. Curr. Org. Chem. 8, 1481–1496.

    Article  CAS  Google Scholar 

  32. Bird, J., De Mello, R. C., Harper, G. P., et al. (1994) Synthesis of novel N-phosphonoalkyl dipeptide inhibitors of human collagenase. J. Med. Chem. 37,158–169.

    Article  CAS  PubMed  Google Scholar 

  33. De Lombeart, S., Erion, M. D., Tan, J., et al. (1994) N-Phosphonomethyl dipeptides and their phosphonate prodrugs, a new generation of neutral endopeptidase (NEP, EC 3.4.24.11) inhibitors. J. Med. Chem. 37, 1498–1511.

    Google Scholar 

  34. Barlett, P. A., Hanson, J. E., and Giannousis, P. P. (1990) Potent inhibition of pepsin and penicillopepsin by phosphorus-containing peptide analogs. J. Org. Chem. 55, 6268–6274.

    Article  Google Scholar 

  35. Campbell, D. A., and Bermak, J. C. (1994) Solid-phase synthesis of peptidylphosphonates. J. Am. Chem. Soc., 116, 6039–6040.

    Article  CAS  Google Scholar 

  36. Campbell, D. A., and Bermak, J. C. (1994) Phosphonate ester synthesis using a modified Mitsunobu condensation. J. Org. Chem. 59, 658–660.

    Article  CAS  Google Scholar 

  37. Campbell, D. A. (1992) The synthesis of phosphonate esters, an extension of the Mitsunobu reaction. J. Org. Chem. 57, 6331–6335.

    Article  CAS  Google Scholar 

  38. Champagne, J.-M., Coste, J., and Jouin, P. (1995) Solid phase synthesis of phosphonopeptides. Tetrahedron Lett. 36, 2079–2082.

    Article  Google Scholar 

  39. Champagne, J.-M., Coste, J., and Jouin, P. (1993) Synthesis of mixed phosphonate diester analogues of dipeptides using BOP or PyBOP reagents. Tetrahedron Lett. 34, 6743–6744.

    Article  Google Scholar 

  40. Seebach, D., Charczuk, R., Berber, C., Renaud, P., Bener, H., and Schneider, H. (1989) Electrochemical decarboxylation of L-threonine and oligopeptide derivatives with formation of N-acyl-N,O-acetals: preparation of oligopeptides with amide or phosphonate C-terminus. Helv. Chim. Acta 72, 401–425.

    Article  CAS  Google Scholar 

  41. Nicolau, K. C., Winssinger, N., Pastor, J., and DeRoose, F. (1997) A general and highly efficient solid phase synthesis of oligosaccharides. Total synthesis of a heptasaccharide phytoalexin elicitor (HPE). J. Am. Chem. Soc. 119, 449–450.

    Article  Google Scholar 

  42. Gademann K., and Seebach D. (2001) Synthesis of cyclo-β-tripeptides and their biological in vitro evaluation as antiproliferatives against the growth of human cancer cell lines. Helv. Chim. Acta 84, 2924–2937.

    Article  CAS  Google Scholar 

  43. Tamilarasu, N., Hoq, I., and Rana, T. M. (2001) Targeting RNA with peptidomimetic oligomers in human cells. Bioorg. Med. Chem. Lett. 11, 505–507.

    Article  CAS  PubMed  Google Scholar 

  44. Appella, D.H., Christianson, L.A., Karle, I.L., Powell, D.R., and Gellman, S. H. (1996) β-Peptide foldamers: robust helix formation in a new family of β-amino acid oligomers. J. Am. Chem. Soc. 118, 13071–13072.

    Article  CAS  Google Scholar 

  45. Wang, X., Espinosa, J. F., and Gellman, S. H. (2000) 12-Helix formation in aqueous solution with short β-peptides containing pyrrolidine-based residues. J. Am. Chem. Soc. 122, 4821–4822.

    Article  CAS  Google Scholar 

  46. Hanessian, S., Luo, R., Schaum, S., and Michcnik, S. (1998) Design of decondary dtructures in unnatural peptides: stable helical γ-tetra-, hexa-, and octapeptides and consequences of α-substitution. J. Am. Chem. Soc. 120, 8569–8570.

    Article  CAS  Google Scholar 

  47. Hanessian, S., Luo, X., and Schaum, R. (1999) Synthesis and folding preferences of γ-amino acid oligopeptides: stereochemical control in the formation of a reverse turn and a helix. Tetrahedron Lett. 40, 4925–4929.

    Article  CAS  Google Scholar 

  48. Seebach, D., Ciceri, P., Overhand, M., et al. (1996) Probing the helical secondary structure of short-chain β-peptides. Helv. Chim. Acta 79, 2043–2066.

    Article  CAS  Google Scholar 

  49. Seebach, D. Sifferlen, T., Mathieu, P. A., et al. (2000) CD spectra in methanol of β-oligopeptides consisting of β-amino acids with functionalized side chains, with alternating configuration, and with geminal backbone substituents—fingerprints of new secondary structures. Helv. Chim. Acta 83, 2849–2864.

    Article  CAS  Google Scholar 

  50. Skurski, P., and Simons. J. (2001) An excess electron bound to urea. I. Canonical and zwitterionic tautomers. J. Chem. Phys. 115, 8373–8380.

    Article  CAS  Google Scholar 

  51. Burgess, K., Ibarzo, J., Linthicum, D. S., et al. (1997) Solid phase synthesis of oligoureas, J. Am. Chem. Soc. 119, 1556–1564.

    Article  CAS  Google Scholar 

  52. Kim, J.-M., Bi, Y., Paikoff, S. J., and Scultz, P. G. (1996) The solid phase synthesis of oligoureas. Tetrahedron Lett. 37, 5305–5308.

    Article  CAS  Google Scholar 

  53. Boeijen, A., van Ameijde, J., and Liskamp, R. M. (2001) Solid-phase synthesis of oligourea peptidomimetics employing the Fmoc protection strategy. J. Org. Chem. 66, 8454–8462.

    Article  CAS  PubMed  Google Scholar 

  54. Boeijen, A., and Liskamp, R. M. (1999) Solid-phase synthesis of oligourea peptidomimetics. Eur. J. Org. Chem. 2127–2135.

    Google Scholar 

  55. Alsina, J., Scott, W. L., and O’Donell, M. J., (2005) Solid-phase synthesis of α-substituted proline hydantoins and analogs. Tetrahedron Lett. 46, 3131–3135.

    Article  CAS  Google Scholar 

  56. Nefzi, A., Giulianotti, M., Truong, L., Rattan, S., Ostresh, J. M., and Houghten, R. A., (2002) Solid-phase synthesis of linear ureas tethered to hydantoins and thiohydantoins. J. Comb. Chem. 4, 175–178.

    Article  CAS  PubMed  Google Scholar 

  57. Shemyakin, M. M., Shchukina, L. A., Vinogradova, E. I., Ravidel, G. A., and Ovchinnikov, Y. A. (1966) Mutual replaceability of amide and ester groups in biologically active peptide and depsipeptides. Experimentia 22, 535–536.

    Article  CAS  Google Scholar 

  58. Bramson, H. N., Thomas, N. E., and Kaiser, E. T. (1985) The use of N-methylated peptides and depsipeptides to probe the binding of heptapeptide substrates to cAMP-dependent protein kinase. J. Biol. Chem. 260, 15452–15457.

    CAS  PubMed  Google Scholar 

  59. Arad, O., and Goodman, M., (1990) Depsipeptide analogues of elastin repeating sequences: synthesis. Biopolymers 29, 1633–1649.

    Article  CAS  PubMed  Google Scholar 

  60. Coombs, G. S., Rao, M. S., Olson, A. J., Dawson, P. E., and Madison, E. L. (1999) Revisiting catalysis by chymotrypsin family serine proteases using peptide substrates and inhibitors with unnatural main chains. J. Biol. Chem. 274,24074–24079.

    Article  CAS  PubMed  Google Scholar 

  61. Davidson, B. S. (1993) Ascidians: producers of amino acid-derived metabolites. Chem. Rev. 93, 1771–1791.

    Google Scholar 

  62. Fusetani, N., and Matsunaga, S. (1993) Bioactive sponge peptides. Chem. Rev. 93, 1793–1806.

    Article  CAS  Google Scholar 

  63. Woo, A. J., Strohl, W. R., and Priestley, N. D. (1999) Nonactin biosynthesis: the product of nonS catalyzes the formation of the furan ring of nonactic acid. Antimicrob. Agents Chemother. 43, 1662–1668.

    CAS  PubMed  Google Scholar 

  64. Stawikowski, M., and Cudic, P. (2006) Depsipeptide synthesis, in Peptide Characterization and Application Protocols (Fields, G. B., ed.), Humana Press, Totowa, NJ, pp. 321–339.

    Google Scholar 

  65. Kuisle, O., Lolo, M., Quinoa, E., and Riguera, R. (1999) Solid phase synthesis of depsides and depsipeptides. Tetrahedron 55, 14807–14812.

    Article  CAS  Google Scholar 

  66. Kuisle, O., Quinoa, E., and Riguera, R., (1999) A general methodology for automated solid-phase synthesis of depsides and depsipeptides. Preparation of a valinomycin analogue. J. Org Chem. 64, 8063–8075.

    Article  CAS  PubMed  Google Scholar 

  67. Marder, O., and Albericio, F. (2003) Industrial application of coupling reagents in peptides. Chim. Oggi 6, 35–40.

    Google Scholar 

  68. Berry J. D., Digiovanna V. C., Metrick S. S., and Murugan R. (2001) Catalysis by 4-dialkylaminopyridines. Arkivoc i, 201–226.

    Google Scholar 

  69. Stawikowski, M., and Cudic, P. (2006) A novel strategy for the solid-phase synthesis of cyclic lipodepsipeptides. Tetrahedron Lett. 47, 8587–8590.

    Article  CAS  PubMed  Google Scholar 

  70. Park, B.-D., and Lee, Y.-S. (2000) The effect of PEG groups on swelling properties of PEG-grafted-polystyrene resins in various solvents. React. Funct. Polymers 44, 41–46.

    Article  CAS  Google Scholar 

  71. Hudson, D. (1988) Methodological implications of simultaneous solid-phase peptide synthesis. 1. Comparison of different coupling procedures. J. Org. Chem. 53, 617–624.

    Article  CAS  Google Scholar 

  72. Podlech J. (2001) Carbodiimides, in Synthesis of Peptides and Peptidomimetics, 4th ed. (Goodman, M., Felix, A., Moroder, L., and Toniolo, C., eds.), Thieme, Stuttgart, pp. 517–533.

    Google Scholar 

  73. Patch, J. A., Kirshenbaum, K., Seurynck, S., Zuckermann, R., and Barron, A. E. (2004) Versatile oligo (N-substituted) glycines: the many roles of peptoids in drug discovery, in Pseudo-Peptides in Drug Development (Neilsen, P. E., ed.), Wiley-VCH, Weinheim, pp. 1–31.

    Google Scholar 

  74. Kwon, Y. U., and Kodadek, T. (2007) Quantitative evaluation of the relative cell permeability of peptoids and peptides. J. Am. Chem. Soc. 129, 1508–1509.

    Article  CAS  PubMed  Google Scholar 

  75. Schröder, T., Schmitz, K., Niemeier, N., et al. (2007) Solid-phase synthesis, bioconjugation, and toxicology of novel cationic oligopeptoids for cellular drug delivery. Bioconjugate Chem. ASAP Article; DOI: 10.1021/bc0602073.

    Google Scholar 

  76. Miller, S. M., Simmon, R. J., Ng, S., Zuckermann, R. N., Kerr, J. M., and Moos, W. H. (1995) Comparison of the proteolytic susceptibilities of homologous L-amino acid, D-amino acid, and N-substituted glycine peptide and peptoid oligomers. Drug Dev. Res. 35, 20–32.

    Article  CAS  Google Scholar 

  77. Stawikowski, M., Stawikowska, R., Jaskiewicz, A., Zablotna, E., and Rolka, K. (2005) Examples of peptide-peptoid hybrid serine protease inhibitors based on the trypsin inhibitor SFTI-1 with complete protease resistance at the P1-P1’ reactive site. Chembiochem. 6, 1057–1061.

    Article  CAS  PubMed  Google Scholar 

  78. Simon, R. J., Kania, R. S., Zuckermann, R. N., et al. (1992) Peptoids: a modular approach to drug discovery. Proc. Natl. Acad. Sci. USA 89, 9367–9371.

    Article  CAS  PubMed  Google Scholar 

  79. Kruijtzer, J. A. W., Hofmeyer, L. J. F., Heerma, W., Versluis, C., and Liskamp, R. M., J. (1998) Solid-phase syntheses of peptoids using Fmoc-protected N-substituted glycines: the synthesis of (retro)peptoids of Leu-enkephalin and substance P. Chem. Eur. J. 4, 1570–1580.

    Article  CAS  Google Scholar 

  80. Uno, T., Beausoleil, E., Goldsmith, R. A., Levine, B.H., and Zuckermann, R. N. (1999) New submonomers for poly N-substituted glycines (peptoids). Tetrahedron Lett. 40, 1475–1478.

    Article  CAS  Google Scholar 

  81. Zuckermann, R. N., Kerr, J.M., Kent, S. B. H., and Moos, W. H. (1992) Efficient method for the preparation of peptoids oligo(N-substituted glycines) by submonomer solid-phase synthesis. J. Am. Chem. Soc. 114, 10646–10647.

    Article  CAS  Google Scholar 

  82. Ostergaard, S., and Holm, A. (1997) Peptomers: a versatile approach for the preparation of diverse combinatorial peptidomimetic bead libraries. Mol. Diver. 3, 17–27.

    Article  CAS  Google Scholar 

  83. Boeijen, A., and Liskamp, R. M. J. (1998) Sequencing of peptoid peptidomimetics by Edman degradation. Tetrahedron Lett. 39, 3589–3592.

    Article  CAS  Google Scholar 

  84. Greene, W. T., and Wuts, G. M. P. (1999) Protective Groups in Organic Synthesis, 3rd ed., John Wiley & Sons, Inc., New York, p. 198.

    Google Scholar 

  85. Bernatowicz, M. S., Daniels, S. B., and Koster, H. (1989) A comparison of acid labile linkage agents for the synthesis of peptide C-terminal amides. Tetrahedron Lett. 30, 4645–4648.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Cudic, P., Stawikowski, M. (2008). Peptidomimetics: Fmoc Solid-Phase Pseudopeptide Synthesis. In: Otvos, L. (eds) Peptide-Based Drug Design. Methods In Molecular Biology™, vol 494. Humana Press. https://doi.org/10.1007/978-1-59745-419-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-419-3_13

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-990-1

  • Online ISBN: 978-1-59745-419-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics