Skip to main content

Part of the book series: Methods In Molecular Biology™ ((MIMB,volume 506))

Summary

Gene transfer into mature T cells with gammaretroviral vectors requires prestimulation, as only mitotic cells are susceptible to integration of the gammaretroviral proviral genome. Costimulation via the CD3/ TCR complex and a second costimulatory molecule, such as CD28 was found to better preserve functionality of the T lymphocytes during ex vivo expansion than stimulation with anti-CD3 alone. The protocols described here for prestimulation and transduction of human and murine T cells with gammaretroviral vectors were optimized for high-level gene transfer and maximum yield of functional T lymphocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reddy, M.M., K.O. Goh and C. Poulter (1975) Mitogenic stimulation of lymphocytes in cancer patients. Oncology. 32, 47 – 51

    Article  CAS  PubMed  Google Scholar 

  2. Stobo, J.D. (1972) Phytohemagglutin and concanavalin A: probes for murine ‘T’ cell activation and differentiation. Transplant Rev. 11, 60 – 86

    CAS  PubMed  Google Scholar 

  3. Andersson, J., O. Sjoberg, and G. Moller (1972) Mitogens as probes for immunocyte activation and cellular cooperation. Transplant Rev. 11, 131 – 77

    CAS  PubMed  Google Scholar 

  4. Damle, N.K., et al. (1992) Differential costimulatory effects of adhesion molecules B7, ICAM-1, LFA-3, and VCAM-1 on resting and antigen-primed CD4 + T lymphocytes. J Immunol. 148 (7), 1985 – 92

    CAS  PubMed  Google Scholar 

  5. Wingren, A.G., et-al. (1995) T cell activation pathways: B7, LFA-3, and ICAM-1 shape unique T cell profiles. Crit Rev Immunol. 15 (3–4), 235 – 53

    CAS  PubMed  Google Scholar 

  6. June, C.H., et al. (1987) T-cell proliferation involving the CD28 pathway is associated with cyclosporine-resistant interleukin 2 gene expression. Mol Cell Biol. 7 (12), 4472 – 81

    CAS  PubMed  Google Scholar 

  7. Bordignon, C., et al. (1995) Gene therapy in peripheral blood lymphocytes and bone marrow for ADA- immunodeficient patients. Science. 270 (5235), 470 – 5

    Article  CAS  PubMed  Google Scholar 

  8. Morgan, R.A., et al. (2006) Cancer regression in patients after transfer of genetically engineered lymphocytes. Science. 314 (5796), 126 – 9

    Article  CAS  PubMed  Google Scholar 

  9. Lunzen, J.V., et al. (2007) Transfer of Autologous Gene-modified T Cells in HIV-infected Patients with Advanced Immunodeficiency and Drug-resistant Virus. Mol Ther. 15 (5), 1024 – 33

    PubMed  Google Scholar 

  10. Buchschacher, G.L., Jr. and F. Wong-Staal. (2000) Development of lentiviral vectors for gene therapy for human diseases. Blood. 95 (8), 2499 – 504

    CAS  PubMed  Google Scholar 

  11. Fehse, B., et al. (1998) Highly-efficient gene transfer with retroviral vectors into human T lymphocytes on fibronectin. Br J Haematol. 102 (2), 566 – 74

    Article  CAS  PubMed  Google Scholar 

  12. Coito, S., et al. (2004) Retrovirus-mediated gene transfer in human primary T lymphocytes induces an activation- and transduction/selection-dependent TCR-B variable chain repertoire skewing of gene-modified cells. Stem Cells Dev. 13 (1), 71 – 81

    Article  CAS  PubMed  Google Scholar 

  13. Kalamasz, D., et al. (2004) Optimization of human T-cell expansion ex vivo using magnetic beads conjugated with anti-CD3 and Anti-CD28 antibodies. J Immunother. 27 (5), 405 – 18

    Article  CAS  PubMed  Google Scholar 

  14. Zhou, J., et al. (2005) Telomere length of transferred lymphocytes correlates with in vivo persistence and tumor regression in melanoma patients receiving cell transfer therapy. J Immunol. 175 (10), 7046 – 52

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Newrzela, S., Gunda, B., Laer, D.v. (2009). T Cell Culture for Gammaretroviral Transfer. In: Baum, C. (eds) Genetic Modification of Hematopoietic Stem Cells. Methods In Molecular Biology™, vol 506. Humana Press. https://doi.org/10.1007/978-1-59745-409-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-409-4_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-980-2

  • Online ISBN: 978-1-59745-409-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics