Skip to main content

Family-Based Linkage Disequilibrium Tests Using General Pedigrees

  • Protocol
Linkage Disequilibrium and Association Mapping

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 376))

  • 1601 Accesses

Abstract

Linkage disequilibrium (LD) mapping has been established as a promising approach to identifying disease genes. The presence of a disease gene located near a marker locus may cause LD between the marker and the disease loci. In LD mapping, we assume that some of the affected individuals may have a common ancestor carrying the mutation and that mutation carriers are likely to share alleles at the markers loci close to the disease gene.

This chapter reviews the concept of LD mapping and outlines the advantages and disadvantages of two LD mapping approaches capable of handling general pedigrees: the family-based association test (FBAT) and pseudomarker. In summary, the pseudomarker statistical approach and the FBAT approach are both expected to offer reasonable statistical power to detect genes underlying complex traits. However, when the pedigree structure is more complicated, or when the number of informative families is limited, the pseudomarker approach is anticipated to outperform FBAT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ott, J. (1999) Analysis of Human Genetics Linkage 3rd ed., Johns Hopkins University Press, Baltimore, MD.

    Google Scholar 

  2. Hastbacka, J., de la Chapelle, A., Kaitila, I., Sistonen, P., Weaver, A., and Lander, E. (1992) Linkage disequilibrium mapping in isolated founder populations: diastrophic dysplasia in Finland. Nat. Genet. 2, 204–211.

    Article  CAS  PubMed  Google Scholar 

  3. Spielman, R. S., McGinnis, R. E., and Ewen, W. J. (1993) Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am. J. Hum. Genet. 52, 506–516.

    CAS  PubMed  Google Scholar 

  4. Terwilliger, J. D. (1995). A powerful likelihood method for the analysis of linkage disequilibrium between trait loci and one or more polymorphic marker loci. Am. J. Hum. Genet. 56, 777–787.

    CAS  PubMed  Google Scholar 

  5. Xiong, M. and Guo, S. W. (1997) Fine-scale genetic mapping based on linkage disequilibrium: theory and applications. Am. J. Hum. Genet. 60, 1513–1531.

    Article  CAS  PubMed  Google Scholar 

  6. Lazzeroni, L. C. (1998) Linkage disequilibrium and gene mapping: an empirical least-squares approach. Am. J. Hum. Genet. 62, 159–170.

    Article  CAS  PubMed  Google Scholar 

  7. Graham, J. and Thompson, E. A. (1998) Disequilibrium likelihoods for fine-scale mapping of a rare allele. Am. J. Hum. Genet. 63, 1517–1530.

    Article  CAS  PubMed  Google Scholar 

  8. Chapman, N. H. and Wijsman, E. M. (1998) Genome screens using linkage disequilibrium tests: optimal marker characteristics and feasibility. Am. J. Hum. Genet. 63, 1872–1885.

    Article  CAS  PubMed  Google Scholar 

  9. Xiong, M. and Jin, L. (2000) Combined linkage and linkage disequilibrium mapping for genome scans. Genet. Epidemiol. 19, 211–234.

    Article  CAS  PubMed  Google Scholar 

  10. Risch, N. and Merikangas, K. (1996) The future of genetic studies of complex human diseases. Science 273, 1516–1517.

    Article  CAS  PubMed  Google Scholar 

  11. Ott, J. (1989) Statistical properties of the haplotype relative risk. Genet. Epidemiol. 6, 127–130.

    Article  CAS  PubMed  Google Scholar 

  12. Terwilliger, J. D. and Ott, J. (1992) A haplotype-based “haplotype relative risk” approach to detection allelic associations. Hum. Hered. 42, 337–346.

    Article  CAS  PubMed  Google Scholar 

  13. Terwilliger, J. D. and Goring, H. H. (2000) Gene mapping in the 20th and 21st centuries: statistical methods, data analysis, and experimental design. Human Biol. 72, 163–132.

    Google Scholar 

  14. Rabinowitz, D. and Laird, N. M. (2000) A unified approach to adjusting association tests for population admixture with arbitrary pedigree structure and arbitrary missing marker information. Hum. Hered. 50, 211–223.

    Article  CAS  PubMed  Google Scholar 

  15. Laird, N. M, Horvath, S., and Xu, X. (2000) Implementing a unified approach to family-based tests of association. Genet. Epidemiol. 19, S36–S42.

    Article  PubMed  Google Scholar 

  16. Lake, S. L., Blacker, D., and Laird, N. M. (2000) Family-based tests of association in the presence of linkage. Am. J. Hum. Genet. 67, 1515–1525.

    Article  CAS  PubMed  Google Scholar 

  17. Lange, C., Silverman, E., Weiss, S., Xu, X., and Laird, N. M. (2002) A multivariate family-based test using generalized estimating equations: FBAT-GEE. Biostatistics 1, 1–15.

    Google Scholar 

  18. Lange, C., DeMeo, D., Silverman, E. K., Weiss, S. T., and Laird, N. M. (2004) PBAT: tools for family-based association studies. Am. J. Hum. Genet. 74, 367–369.

    Article  PubMed  Google Scholar 

  19. Whittaker, J. C. and Lewis, C. M. (1998) Power comparisons of the transmission/ disequilibrium test and sib-transmission/disequilibrium-test statistics. Am. J. Hum. Genet. 65, 578–580.

    Article  Google Scholar 

  20. Lunetta, K. L, Faraone, S. V., Biederman, J., and Laird, N. M. (2000) Family-based tests of association and linkage that use unaffected sibs, covariates, and interactions. Am. J. Hum. Genet. 66, 605–614.

    Article  CAS  PubMed  Google Scholar 

  21. Horvath, S., Xu, X., Lake, S. L., Silverman, E. K., Weiss, S. T., and Laird, N. M. (2004) Family based tests for association haplotypes with general trait data: application to asthma genetics. Genet. Epidemiol. 26, 61–69.

    Article  PubMed  Google Scholar 

  22. Lake, L. S. and Laid, N. M. (2003) Tests of gene-environment interaction for caseparent triads with general environmental exposures. Annals Hum. Genet. 68, 55–64.

    Article  Google Scholar 

  23. Umbach, D. M. and Weinberg, C. R. (2000) The use of case-parent triads to study joint effects of genotype and exposure. Am. J. Hum. Genet. 66, 251–261.

    Article  CAS  PubMed  Google Scholar 

  24. Horvath, S., Xu, X., and Laird, N. M. (2001) The family based association test method: strategies for studying general genotype-phenotype associations. Eur. J. Hum. Genet. 9, 301–309.

    Article  CAS  PubMed  Google Scholar 

  25. Schneiter, K., Laird, N., and Corcoran, C. (2005) Exact family-based association tests for biallelic data. Genet. Epidemiol. 29, 185–194.

    Article  PubMed  Google Scholar 

  26. Steen, K. V. and Lange, C. (2005) PBAT: a comprehensive software package for genome-wide association analysis of complex family-based studies. Hum. Genomics 2, 67–69.

    PubMed  Google Scholar 

  27. Monks, S. A., Kaplan, N. L., and Weir, B. S. (1998) A comparative study of sibship tests of linkage and/or association. Am. J. Hum. Genet. 63, 1507–1516.

    Article  CAS  PubMed  Google Scholar 

  28. Martin, E. R., Bass, M. P., Hauser, E. R., and Kaplan, N. L. (2003) Accounting for linkage in family based tests of association with missing parental genotypes. Am. J. Hum. Genet. 73, 1016–1026.

    Article  CAS  PubMed  Google Scholar 

  29. Cantor, R. M., Chen, G. K., Pajukanta, P., and Lange, K. (2005) Association testing in a linked region using large pedigrees. Am. J. Hum. Genet. 76, 538–542.

    Article  CAS  PubMed  Google Scholar 

  30. Lange, K., Cantor, R., Horvath, S., et al. (2001) Mendel version 4.0: a complete package for the exact genetic analysis of discrete traits in pedigree and population data sets. Am. J. Hum. Genet. 69, 504.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Shugart, Y.Y., Chen, L., Li, R., Beaty, T. (2007). Family-Based Linkage Disequilibrium Tests Using General Pedigrees. In: Collins, A.R. (eds) Linkage Disequilibrium and Association Mapping. Methods in Molecular Biology™, vol 376. Humana Press. https://doi.org/10.1007/978-1-59745-389-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-389-9_10

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-669-6

  • Online ISBN: 978-1-59745-389-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics