Skip to main content

Cryopreservation and Freeze-Drying of Fungi Employing Centrifugal and Shelf Freeze-Drying

  • Protocol
Cryopreservation and Freeze-Drying Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 368))

Abstract

The aim of preserving a fungus is to maintain it in a viable state without change to its genetic, physiological, or anatomical characters. There are numerous methodologies available to preserve a fungus, but the two methods widely used by culture collections (biological or genetic resource centers) to achieve successful preservation are cryopreservation with liquid nitrogen using controlled-rate freezing and centrifugal freeze-drying. Generic methods are often used, but specific variations of a method may be required in order to achieve optimal stability. No single method can be applied to all fungi. More recently, techniques such as vitrification and encapsulation cryopreservation have been used to preserve recalcitrant fungi. The protocols described within this chapter have been developed over many years at one of the world’s largest culture collections of filamentous fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ryan, M. J. and Smith, D. (2004) Fungal Genetic Resource Centres and the genomic challenge. Mycol. Res. 108, 1351–1362.

    Article  Google Scholar 

  2. Smith, D. and Ryan, M. J. (2004) Current status of fungal collections and their role in biotechnology. In: Handbook of Fungal Biotechnology, 2nd ed., (Arora, D. K., ed.), Marcel Dekker, Inc., New York, pp. 527–538.

    Google Scholar 

  3. Ryan, M. J., Bridge, P. D., Smith, D., and Jeffries, P. (2002) Phenotypic degeneration occurs during sector formation in Metarhizium anisopliae. J. Appl. Microbiol. 93, 163–168.

    Article  CAS  Google Scholar 

  4. Smith, D. and Onions, A. H. S. (1994) The Preservation and Maintenance of Living Fung, 2nd ed. CAB International, Wallingford, UK.

    Google Scholar 

  5. Calcott, P. H. (1978) Freezing and Thawing Microbes. Meadowfield Press, Durham, UK.

    Google Scholar 

  6. Ryan, M. J., Smith, D., and Jeffries, P. (2000) A decision-based key to determine the most appropriate protocol for the preservation of fungi. WJMB 16, 183–186.

    Google Scholar 

  7. Franks, F. (1981) Biophysics and biochemistry of low temperatures and freezing. In: Effects of Low Temperature of Biological Membranes, (Morris, G. J. and Clarke A., eds.), Academic Press, London, UK, pp. 3–19.

    Google Scholar 

  8. Smith, D. (1993) Tolerance to freezing and thawing. In: Stress Tolerance of Fungi, (Jennings, D.H., ed.), Marcel Dekker, Inc., New York, pp. 145–171.

    Google Scholar 

  9. Morris, G. J. (1981) Cryopreservation: An Introduction to Cryopreservation in Culture Collections. Culture Centre of Algae and Protozoa. ITE, Cambridge, UK.

    Google Scholar 

  10. Kirsop, B. E. and Doyle, A. (1991) Maintenance of Microorganisms and Cultured Cells: A Manual of Laboratory Methods. Academic Press, London, UK.

    Google Scholar 

  11. Smith, D., Ryan, M. J., and Day, J. G. (2001) The UKNCC Biological Resource: Properties, Maintenance, and Management. UKNCC Secretariat, Egham, Surrey, UK.

    Google Scholar 

  12. Hwang, S.-W. (1960) Effects of ultralow temperature on the viability of selected fungus strains. Mycologia 52, 527–529.

    Article  Google Scholar 

  13. Polge, C., Smith, A. U., and Parkes, S. (1949) Revival of spermatozoa after dehydration at low temperatures. Nature London 164, 666.

    Article  CAS  Google Scholar 

  14. Morris, G. J., Smith, D., and Coulson, G. E. (1988) A comparative study of the morphology of hyphae during freezing with the viability upon thawing of 20 species of fungi. J. Gen. Microbiol. 134, 2897–2906.

    Google Scholar 

  15. Smith, D. and Thomas, V. E. (1998) Cryogenic light microscopy and the development of cooling protocols for the cryopreservation of filamentous fungi. WJMB 14, 49–57.

    Google Scholar 

  16. Hwang, S.-W. and Howell, A. (1968) Investigation of ultra-low temperature of fungal cultures II. Cryoprotection afforded by glycerol and dimethyl sulphoxide to eight selected fungal cultures. Mycologia 60, 622–626.

    Article  Google Scholar 

  17. Hwang, S.-W., Kylix, W. F., and Haynes, W. C. (1976) Investigation of ultra low temperature for fungal cultures III. Viability and growth rate of mycelial cultures cryogenic storage. Mycologia 68, 377–387.

    Article  Google Scholar 

  18. Ashwood-Smith, M. J. and Warby, C. (1971) Studies on the molecular weight and cryoprotective properties of PVP and Dextran. Cryobiology 8, 453–464.

    Article  CAS  Google Scholar 

  19. Smith, D. (1983) Cryoprotectants and the cryopreservation of fungi. Trans. Br. Mycol. Soc. 80, 360–363.

    Article  Google Scholar 

  20. Hwang, S.-W. (1966) Long term preservation of fungus cultures with liquid nitrogen refrigeration. Appl. Microbiol. 14, 784–788.

    CAS  Google Scholar 

  21. Hwang, S.-W. (1968) Investigation of ultra low temperature for fungal cultures I. An evaluation of liquid nitrogen storage for preservation of selected fungal cultures. Mycologia 60, 613–621.

    Article  Google Scholar 

  22. Heckly, R. J. (1978) Preservation of microorganisms. Adv. Appl. Microbiol. 24, 1–53.

    Article  CAS  Google Scholar 

  23. Benson, E. E., Wilkinson, M., Todd, A., Ekuere, U., and Lyon, J. (1996) Developmental competence and ploidy stability in plants regenerated from cryopreserved potato shoot tips. CryoLetters 17, 119–128.

    Google Scholar 

  24. Benson, E. E. (1994) Cryopreservation. In: Practical Plant Cell Culture: A Practical Approach, (Dixon, R. A., ed.), IRL Press, Oxford, UK, pp. 147–166.

    Google Scholar 

  25. Tan, C. S. and Stalpers, J. A. (1996) Vitrification of fungi. In: Biodiversity, International Biodiversity Seminar ECCO XIV Meeting, (Cimerman, A. and Gunde-Cimerman, N., eds.), ECCO, Ljubljana, Slovenia, pp. 189–193.

    Google Scholar 

  26. Ryan, M. J. (2001) The use of immobilisation for the preservation of Serpula lacrymans. Mycologist 15, 66–69.

    Google Scholar 

  27. Declerck, S. and Coppenolle, M. G. A. V. (2000) Cryopreservation of entrapped monoxenically produced spores of an arbuscular mycorrhizal fungus. New Phytot. 148, 169–176.

    Article  Google Scholar 

  28. Ryan, M. J. and Ellison, C. (2003) Development of a cryopreservation protocol for the microcyclic rust-fungus Puccinia Spegazzinii. CryoLetters 24, 43–48.

    Google Scholar 

  29. Wood, C. B., Pritchard, H. W., and Miller, A. P. (2000) Simultaneous preservation of orchid seed and its fungal symbiont using encapsulation-dehydration is dependent on moisture content and storage temperature. CryoLetters 21, 125–136.

    Google Scholar 

  30. Raper, K. B. and Alexander, D. F. (1945) Preservation of moulds by the lyophil process. Mycologia 37, 499–525.

    Article  Google Scholar 

  31. Tan, C. S. (1997) Preservation of fungi. Cryptogamic Mycology 18, 157–163.

    Google Scholar 

  32. von Arx, J. A. and Schipper, M. A. A. (1978) The CBS fungus collection. Adv. Appl. Microbiol. 24, 215–236.

    Article  Google Scholar 

  33. Advisory Committee for Dangerous Pathogens (2004) The Approved List of Biological Agents. HSE London, HMSO Norwich, UK.

    Google Scholar 

  34. Smith, D. (1986) The evaluation and development of techniques for the preservation of living fungi. PhD Thesis, University of London, London, UK.

    Google Scholar 

  35. Smith, D. and Kolkowski, J. (1992) Fungi. In: Preservation and Maintenance of cultures used in Biotechnology and Industry. Butterworth Publishing Company, Stoneham, MA.

    Google Scholar 

  36. Rey, L. R. (1977) Glimpses into the fundamental aspects of freeze drying. In: Development in Biological Standardisation. International Symposium of Freeze Drying of Biological Products, (Cabasso, V. J., Regamey R. H., and Krager S., eds.), Basel, Switzerland, pp. 19–27.

    Google Scholar 

  37. Ashwood-Smith, M. J. and Grant, E. (1976) Mutation induction in bacteria by freeze-drying. Cryobiology 13, 206–213.

    Article  CAS  Google Scholar 

  38. Staffeld, E. E. and Sharp, E. L. (1954) Modified lyophil method for preservation of Pythium species. Phytopathology 44, 213–214.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Ryan, M.J., Smith, D. (2007). Cryopreservation and Freeze-Drying of Fungi Employing Centrifugal and Shelf Freeze-Drying. In: Day, J.G., Stacey, G.N. (eds) Cryopreservation and Freeze-Drying Protocols. Methods in Molecular Biology™, vol 368. Humana Press. https://doi.org/10.1007/978-1-59745-362-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-362-2_9

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-377-0

  • Online ISBN: 978-1-59745-362-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics