Skip to main content

Analysis of PrP Conformation Using Circular Dichroism

  • Protocol
Prion Protein Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 459))

Summary

The availability of recombinant prion proteins (recPrP) has been exploited as a model system to study PrP-mediated toxicity, conversion, and infectivity. According to the protein only hypothesis, the central event in the pathogenesis of prion diseases is the conversion of PrPC to PrPSc. This involves a dramatic increase in β sheet conformation as PrPC is converted to PrPSc, and it is widely believed that this conformational change affects the as-yet undefined function of PrPC. Although there are many methods available to monitor for the changes in the structural makeup of PrP mutants and oligomers formed with respect to disease relevance, circular dichroism is one of the most popular methods used. In this chapter, we discuss the fundamental principles of circular dichroism and its current role and applications in prion disease research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Peterson, D.L., and Simpson, W.T. (1957) Polarized electronic absorption spectrum of amides with assignments of transitions. J Am Chem Soc 79, 2375–2382.

    Article  CAS  Google Scholar 

  2. Hunt, H.D., and Simpson, W.T. (1953) Spectra of simple amides in the vacuum ultraviolet. J Am Chem Soc 75, 4540–4543.

    Article  CAS  Google Scholar 

  3. Sehellman, H. A., and Sehellman, C. (1964) Conformation of polypeptide chains. In: Neurath, H. and Hill, R.L. (eds.), Academic Press, New York.

    Google Scholar 

  4. Peggion, E., Fontana, A., and Cosani, A. (1969) Conformational studies on a modified poly-L-tryptophan: circular dichroism and optical rotatory dispersion of poly-2-(2-nitrophenylsulfenyl)-L-tryptophan and of random copolymers of L-tryptophan and 2-(2-nitrophenylsulfenyl)-L-tryptophan. Biopolymers 7, 517–526.

    Article  CAS  Google Scholar 

  5. Greenfield, N.J., and Fasman, G.D. (1970) The circular dichroism of 3-methylpyrrolidin-2-one. J Am Chem Soc 92, 177–181.

    Article  CAS  Google Scholar 

  6. Nielsen, E.B., and Schellman, J.A. (1967) The absorption spectra of simple amides and peptides. J Phys Chem 71, 2297–2304.

    Article  CAS  PubMed  Google Scholar 

  7. Greenfield, N.J., and Fasman, G.D. (1969) Optical activity of simple cyclic amides in solution. Biopolymers 7, 595–610.

    Article  CAS  Google Scholar 

  8. Matouschek, A., Serrano, L., and Fersht, A.R. (1994) Analysis of protein folding by protein engineering. In: Mechanisms of protein folding (Pain, R.H., ed.), IRL Press, Oxford, UK.

    Google Scholar 

  9. Miles, A.J., and Wallace, B.A. (2006) Synchrotron radiation circular dichroism spectroscopy of proteins and applications in structural and functional genomics. Chem Soc Rev 35, 39–51.

    Article  CAS  PubMed  Google Scholar 

  10. Lees, J.G., Smith, B.R., Wien, F., Miles, A.J., and Wallace, B.A. (2004) CDtool-an integrated software package for circular dichroism spectroscopic data processing, analysis, and archiving. Anal Biochem 332, 285–289.

    Article  CAS  PubMed  Google Scholar 

  11. Greenfield, N.J. (2004) Analysis of circular dichroism data. Methods Enzymol 383, 282–317.

    Article  CAS  PubMed  Google Scholar 

  12. Hennessey, J.P., Jr., and Johnson, W.C., Jr. (1981) Information content in the circular dichroism of proteins. Biochemistry 20, 1085–1094.

    Article  CAS  PubMed  Google Scholar 

  13. Sreerama, N., and Woody, R.W. (1994) Protein secondary structure from circular dichroism spectroscopy. Combining variable selection principle and cluster analysis with neural network, ridge regression and self-consistent methods. J Mol Biol 242, 497–507.

    CAS  PubMed  Google Scholar 

  14. Brahms, S., and Brahms, J. (1980) Determination of protein secondary structure in solution by vacuum ultraviolet circular dichroism. J Mol Biol 138, 149–178.

    Article  CAS  PubMed  Google Scholar 

  15. Provencher, S.W., and Glockner, J. (1981) Estimation of globular protein secondary structure from circular dichroism. Biochemistry 20, 33–37.

    Article  CAS  PubMed  Google Scholar 

  16. Manavalan, P., and Johnson, W.C., Jr. (1987) Variable selection method improves the prediction of protein secondary structure from circular dichroism spectra. Anal Biochem 167, 76–85.

    Article  CAS  PubMed  Google Scholar 

  17. Sreerama, N., and Woody, R.W. (1993) A self-consistent method for the analysis of protein secondary structure from circular dichroism. Anal Biochem 209, 32–44.

    Article  CAS  PubMed  Google Scholar 

  18. Sreerama, N., and Woody, R.W. (1994) Poly(pro)II helices in globular proteins: identification and circular dichroic analysis. Biochemistry 33, 10022–10025.

    Article  CAS  PubMed  Google Scholar 

  19. Andrade, M.A., Chacon, P., Merelo, J.J., and Moran, F. (1993) Evaluation of secondary structure of proteins from UV circular dichroism spectra using an unsupervised learning neural network. Protein Eng 6, 383–390.

    Article  CAS  PubMed  Google Scholar 

  20. Pan, K.M., Baldwin, M., Nguyen, J., Gasset, M., Serban, A., Groth, D., Mehlhorn, I., Huang, Z., Fletterick, R.J., Cohen, F.E., et al. (1993) Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci U S A 90, 10962–10966.

    Article  CAS  PubMed  Google Scholar 

  21. Safar, J., Roller, P.P., Gajdusek, D.C., and Gibbs, C.J., Jr. (1993) Conformational transitions, dissociation, and unfolding of scrapie amyloid (prion) protein. J Biol Chem 268, 20276–20284.

    CAS  PubMed  Google Scholar 

  22. Safar, J., Roller, P.P., Gajdusek, D.C., and Gibbs, C.J., Jr. (1993) Thermal stability and conformational transitions of scrapie amyloid (prion) protein correlate with infectivity. Protein Sci 2, 2206–2216.

    Article  CAS  PubMed  Google Scholar 

  23. Gasset, M., Baldwin, M.A., Lloyd, D.H., Gabriel, J.M., Holtzman, D.M., Cohen, F., Fletterick, R., and Prusiner, S.B. (1992) Predicted alpha-helical regions of the prion protein when synthesized as peptides form amyloid. Proc Natl Acad Sci U S A 89, 10940–10944.

    Article  CAS  PubMed  Google Scholar 

  24. Selvaggini, C., De Gioia, L., Cantu, L., Ghibaudi, E., Diomede, L., Passerini, F., Forloni, G., Bugiani, O., Tagliavini, F., and Salmona, M. (1993) Molecular characteristics of a protease-resistant, amyloidogenic and neurotoxic peptide homologous to residues 106–126 of the prion protein. Biochem Biophys Res Commun 194, 1380–1386.

    Article  CAS  PubMed  Google Scholar 

  25. Gabus, C., Derrington, E., Leblanc, P., Chnaiderman, J., Dormont, D., Swietnicki, W., Morillas, M., Surewicz, W.K., Marc, D., Nandi, P., and Darlix, J.L. (2001) The prion protein has RNA binding and chaperoning properties characteristic of nucleocapsid protein NCP7 of HIV-1. J Biol Chem 276, 19301–19309.

    Article  CAS  PubMed  Google Scholar 

  26. Deleault, N.R., Lucassen, R.W., and Supattapone, S. (2003) RNA molecules stimulate prion protein conversion. Nature 425, 717–720.

    Article  CAS  PubMed  Google Scholar 

  27. Marc, D., Mercey, R., and Lantier, F. (2007) Scavenger, transducer, RNA chaperone? What ligands of the prion protein teach us about its function. Cell Mol Life Sci 64, 815–29.

    Article  CAS  PubMed  Google Scholar 

  28. Stockel, J., Safar, J., Wallace, A.C., Cohen, F.E., and Prusiner, S.B. (1998) Prion protein selectively binds copper(II) ions. Biochemistry 37, 7185–7193.

    Article  CAS  PubMed  Google Scholar 

  29. Brown, D.R., Hafiz, F., Glasssmith, L.L., Wong, B.S., Jones, I.M., Clive, C., and Haswell, S.J. (2000) Consequences of manganese replacement of copper for prion protein function and proteinase resistance. EMBO J 19, 1180–1186.

    Article  CAS  PubMed  Google Scholar 

  30. Jackson, G.S., Hosszu, L.L., Power, A., Hill, A.F., Kenney, J., Saibil, H., Craven, C.J., Waltho, J.P., Clarke, A.R., and Collinge, J. (1999) Reversible conversion of monomeric human prion protein between native and fibrilogenic conformations. Science 283, 1935–1937.

    Article  CAS  PubMed  Google Scholar 

  31. Kazlauskaite, J., Sanghera, N., Sylvester, I., Venien-Bryan, C., and Pinheiro, T.J. (2003) Structural changes of the prion protein in lipid membranes leading to aggregation and fibrillization. Biochemistry 42, 3295–3304.

    Article  CAS  PubMed  Google Scholar 

  32. Hornemann, S., Korth, C., Oesch, B., Riek, R., Wider, G., Wuthrich, K., and Glockshuber, R. (1997) Recombinant full-length murine prion protein, mPrP(23–231): purification and spectroscopic characterization. FEBS Lett 413, 277–281.

    Article  CAS  PubMed  Google Scholar 

  33. Negro, A., De Filippis, V. , Skaper, S.D., James, P., and Sorgato, M.C. (1997) The complete mature bovine prion protein highly expressed in Escherichia coli: biochemical and structural studies. FEBS Lett 412, 359–364.

    Article  CAS  PubMed  Google Scholar 

  34. Zahn, R., von Schroetter, C., and Wuthrich, K. (1997) Human prion proteins expressed in Escherichia coli and purified by high-affinity column refolding. FEBS Lett 417, 400–404.

    Article  CAS  PubMed  Google Scholar 

  35. Morillas, M., Swietnicki, W., Gambetti, P., and Surewicz, W.K. (1999) Membrane environment alters the conformational structure of the recombinant human prion protein. J Biol Chem 274, 36859–36865.

    Article  CAS  PubMed  Google Scholar 

  36. Lu, K., Wang, W., Xie, Z., Wong, B.S., Li, R., Petersen, R.B., Sy, M.S., and Chen, S.G. (2000) Expression and structural characterization of the recombinant human doppel protein. Biochemistry 39, 13575–13583.

    Article  CAS  PubMed  Google Scholar 

  37. Loftus, B., and Rogers, M. (1997) Characterization of a prion protein (PrP) gene from rabbit; a species with apparent resistance to infection by prions. Gene 184, 215–219.

    Article  CAS  PubMed  Google Scholar 

  38. Vorberg, I., Groschup, M.H., Pfaff, E., and Priola, S.A. (2003) Multiple amino acid residues within the rabbit prion protein inhibit formation of its abnormal isoform. J Virol 77, 2003–2009.

    Article  CAS  PubMed  Google Scholar 

  39. Kazlauskaite, J., and Pinheiro, T.J. (2005) Aggregation and fibrillization of prions in lipid membranes. Biochem Soc Symp 72, 211–222.

    CAS  PubMed  Google Scholar 

  40. Critchley, P., Kazlauskaite, J., Eason, R., and Pinheiro, T.J. (2004) Binding of prion proteins to lipid membranes. Biochem Biophys Res Commun 313, 559–567.

    Article  CAS  PubMed  Google Scholar 

  41. Liemann, S., and Glockshuber, R. (1999) Influence of amino acid substitutions related to inherited human prion diseases on the thermodynamic stability of the cellular prion protein. Biochemistry 38, 3258–3267.

    Article  CAS  PubMed  Google Scholar 

  42. Johnson, R.T., and Gibbs, C.J., Jr. (1998) Creutzfeldt-Jakob disease and related transmissible spongiform encephalopathies. N Engl J Med 339, 1994–2004.

    Article  CAS  PubMed  Google Scholar 

  43. Collinge, J. (2001) Prion diseases of humans and animals: their causes and molecular basis. Annu Rev Neurosci 24, 519–550.

    Article  CAS  PubMed  Google Scholar 

  44. Parchi, P. , Zou, W., Wang, W., Brown, P. , Capellari, S., Ghetti, B., Kopp, N., Schulz-Schaeffer, W.J., Kretzschmar, H.A., Head, M.W., Ironside, J.W., Gambetti, P., and Chen, S.G. (2000) Genetic influence on the structural variations of the abnormal prion protein. Proc Natl Acad Sci U S A 97, 10168–10172.

    Article  CAS  PubMed  Google Scholar 

  45. Palmer, M.S., Dryden, A.J., Hughes, J.T., and Collinge, J. (1991) Homozygous prion protein genotype predisposes to sporadic Creutzfeldt-Jakob disease. Nature 352, 340–342.

    Article  CAS  PubMed  Google Scholar 

  46. Riek, R., Wider, G., Billeter, M., Hornemann, S., Glockshuber, R., and Wuthrich, K. (1998) Prion protein NMR structure and familial human spongiform encephalopathies. Proc Natl Acad Sci U S A 95, 11667–11672.

    Article  CAS  PubMed  Google Scholar 

  47. Petchanikow, C., Saborio, G.P., Anderes, L., Frossard, M.J., Olmedo, M.I., and Soto, C. (2001) Biochemical and structural studies of the prion protein polymorphism. FEBS Lett 509, 451–456.

    Article  CAS  PubMed  Google Scholar 

  48. Tahiri-Alaoui, A., Gill, A.C., Disterer, P., and James, W. (2004) Methionine 129 variant of human prion protein oligomerizes more rapidly than the valine 129 variant: implications for disease susceptibility to Creutzfeldt-Jakob disease. J Biol Chem 279, 31390–31397.

    Article  CAS  PubMed  Google Scholar 

  49. Hosszu, L.L., Jackson, G.S., Trevitt, C.R., Jones, S., Batchelor, M., Bhelt, D., Prodromidou, K., Clarke, A.R., Waltho, J.P., and Collinge, J. (2004) The residue 129 polymorphism in human prion protein does not confer susceptibility to Creutzfeldt-Jakob disease by altering the structure or global stability of PrPC. J Biol Chem 279, 28515–28521.

    Article  CAS  PubMed  Google Scholar 

  50. Baskakov, I.V., Legname, G., Prusiner, S.B., and Cohen, F.E. (2001) Folding of prion protein to its native alpha-helical conformation is under kinetic control. J Biol Chem 276, 19687–19690.

    Article  CAS  PubMed  Google Scholar 

  51. Baskakov, I.V., Legname, G., Baldwin, M.A., Prusiner, S.B., and Cohen, F.E. (2002) Pathway complexity of prion protein assembly into amyloid. J Biol Chem 277, 21140–21148.

    Article  CAS  PubMed  Google Scholar 

  52. Tahiri-Alaoui, A., and James, W. (2005) Rapid formation of amyloid from alpha-monomeric recombinant human PrP in vitro. Protein Sci 14, 942–947.

    Article  CAS  PubMed  Google Scholar 

  53. Baskakov, I., Disterer, P., Breydo, L., Shaw, M., Gill, A., James, W., and Tahiri-Alaoui, A. (2005) The presence of valine at residue 129 in human prion protein accelerates amyloid formation. FEBS Lett 579, 2589–2596.

    Article  CAS  PubMed  Google Scholar 

  54. Parchi, P. , Giese, A., Capellari, S., Brown, P. , Schulz-Schaeffer, W., Windl, O., Zerr, I., Budka, H., Kopp, N., Piccardo, P. , Poser, S., Rojiani, A., Streichemberger, N., Julien, J., Vital, C., Ghetti, B., Gambetti, P., and Kretzschmar, H. (1999) Classification of sporadic Creutzfeldt-Jakob disease based on molecular and phenotypic analysis of 300 subjects. Ann Neurol 46, 224–233.

    Article  CAS  PubMed  Google Scholar 

  55. Windl, O., Dempster, M., Estibeiro, J.P., Lathe, R., de Silva, R., Esmonde, T., Will, R., Springbett, A., Campbell, T.A., Sidle, K.C., Palmer, M.S., and Collinge, J. (1996) Genetic basis of Creutzfeldt-Jakob disease in the United Kingdom: a systematic analysis of predisposing mutations and allelic variation in the PRNP gene. Hum Genet 98, 259–264.

    Article  CAS  PubMed  Google Scholar 

  56. Alperovitch, A., Zerr, I., Pocchiari, M., Mitrova, E., de Pedro Cuesta, J., Hegyi, I., Collins, S., Kretzschmar, H., van Duijn, C., and Will, R.G. (1999) Codon 129 prion protein genotype and sporadic Creutzfeldt-Jakob disease. Lancet 353, 1673–1674.

    Article  CAS  PubMed  Google Scholar 

  57. Baskakov, I.V., Legname, G., Gryczynski, Z., and Prusiner, S.B. (2004) The peculiar nature of unfolding of the human prion protein. Protein Sci 13, 586–595.

    Article  CAS  PubMed  Google Scholar 

  58. Boer H., and Koivula A. (2003) The relationship between thermal stability and pH optimun studied with wild-type and mutant Trichoderma reesei cellobiohydrolase Ce17A. Eur J Biochem 270, 841–848.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this protocol

Cite this protocol

Han, S., Hill, A.F. (2008). Analysis of PrP Conformation Using Circular Dichroism. In: Hill, A.F. (eds) Prion Protein Protocols. Methods in Molecular Biology™, vol 459. Humana Press. https://doi.org/10.1007/978-1-59745-234-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-234-2_11

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-897-3

  • Online ISBN: 978-1-59745-234-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics