Skip to main content

Engineering Protein Particles for Pulmonary Drug Delivery

  • Protocol
Drug Delivery Systems

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 437))

Abstract

Pulmonary delivery of proteins requires particles for delivery to be in the aerodynamic size range 1–5 μm for deep lung deposition. However, the traditional particle size reduction technique of jet-milling normally used for inhalation is not suitable for processing these protein particles because of their lability brought about by the weak physical interactions making up their higher order structures. Advanced techniques such as spray drying, spray freeze drying and the use of supercritical fluid technology have been developed to produce particles in the suitable size range and morphology for deep long deposition without altering the native conformation of these biomolecules. Judicious use of excipients and operating conditions are some of the factors needed for a successful particle design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1. Shoyele, S. A. and Slowey, A. (2006) Prospects of formulating protein/peptides as aerosols for pulmonary drug delivery. Int. J. Pharm. 314:1–8.

    Article  CAS  Google Scholar 

  2. Shoyele, S. A, and Cawthorne, C. (2006) Particle engineering techniques for inhaled biopharmaceuticals. Adv. Drug Deliv. Rev. (in press).

    Google Scholar 

  3. 3. Taylor, K. (2002) Pulmonary drug delivery, in Aulton, M. E. (ed.), Pharmaceutics, the Science of Dosage Form Design (). Churchill Livingston, Edinburgh, 473–498.

    Google Scholar 

  4. 4. Okamoto, H., Todo, H., Lida, K., and Danjo, K. (2002) Dry powder for pulmonary delivery of peptides and proteins. KONA 20:71–83.

    CAS  Google Scholar 

  5. Lai, M. C and Topp, E. M. (1999) Solid state chemical stability of proteins and peptides. J. Pharm. Sci. 489–500.

    Google Scholar 

  6. Van Vlack, L. H. (1980) Elements of Material Science and Engineering, Addison Wesley, Reading, 185–208.

    Google Scholar 

  7. 7. Hinrichs, W. L. J., De Smelt, N. N., Demeester, J., and Frijlink, H. W. (2005) Inulin is a promising cryo and lyoprotectant for PEGylated lipoplexes. J. Control. Rel. 103:465–479.

    Article  CAS  Google Scholar 

  8. 8. Johnson, K. A. (1997) Preparation of peptide and protein powder for inhalation,. Adv. Drug Del. Rev. 26:3–15.

    Article  CAS  Google Scholar 

  9. 9. Coldron, V., Vanderbist, F., Verbeeck, R., Mohammed, A., Lison, D., Preat, V., and Vanbever, R. (2003) Systemic delivery of parathyroid hormone (1–34) using inhalation dry powder in rats. J. Pharm. Sci. 92:938–950.

    Article  Google Scholar 

  10. 10. Sievers, R. E., Huang, E. T. S., Villa, J. A., Engling, G., Brauer, and P. R. (2003) Micronization of water-soluble or alcohol soluble pharmaceuticals and model compounds with a low temperature Bubble Dryer®. J. Supercritical Fluids 26:9–16.

    Article  CAS  Google Scholar 

  11. 11. Constantino, H. R., Firouzabadian, L., Hogeland, K., Wu, C., Banganski, C., Cordova, C. M., Carrasquillo, K. G., Griebenow, Zale, S. E., Tracy, W. A. (2000) Protein spray freeze drying. Effect of atomization conditions on particle size and stability. Pharm. Res. 17:1374–1384.

    Article  Google Scholar 

  12. 12. Zijlstra, G. S., Hinrichs, W. L. J., De Boer, A. H., and Frijlink, H. W. (2004) The role of particle engineering in relation to formulation and deaggragation principle in the development of a dry powder formulation of cetrorelix. Eur. J. Pharm. Sci. 23:139–149.

    Article  CAS  Google Scholar 

  13. 13. Yu, Z., Johnston, K. P., and Williams III, R. O. (2006) Spray freezing into liquid: Influence of atomization on protein aggregation and biological activity. Eur. J. Pharm. Sci. 27:9–18.

    Article  CAS  Google Scholar 

  14. 14. York, P. (1997) Strategies for particle design using supercritical fluid technologies. PSST 2:430–440.

    Google Scholar 

  15. 15. Vemavarapu, C., Mollan, M. J., Lodaya, M., Needham, T. E. (2005) Design and process aspects of laboratory scale SCF particle formation system. Int. J. Pharm. 292:1–16.

    Article  CAS  Google Scholar 

  16. 16. Pasquali, I., Bettini, R., and Gordono, F. (2006) Solid state chemistry and particle engineering with supercritical fluids in pharmaceutics. Eur. J. Pharm. Sci. 27:299–310.

    Article  CAS  Google Scholar 

  17. 17. Tandya, A., Dehghani, F., and Foster, N. R. (2006) Micronization of cyclosporine using dense gas technique. J. Supercritical Fluids 27:272–278.

    Article  Google Scholar 

  18. 18. Yeo, S. D., Lim, G. B., Debenedetti, P. D., and Bernstein, H. (1993) Formation of microparticulate protein powder using a supercritical fluid anti-solvent. Biotechnol. Bioeng. 41:341–346.

    Article  CAS  Google Scholar 

  19. Thiering, R., Dehghani, F., Foster, N. R. (2000) Micronization of model proteins using compressed CO2. Proceedings of the 5th International Symposium on Supercritical Fluids, Atlanta.

    Google Scholar 

  20. 20. Yeo, S. D., Debenechi, P. G., Radosz, M., and Schmidt, H. W. (1993) Supercritical anti-solvent process for substituted para-linked aromatic polyamides: phase equilibrium and morphology study. Macromolecules 26:6207–6210.

    Article  CAS  Google Scholar 

  21. 21. Jovanovic, N., Bouchard, A., Hofland, G. W., Witkamp, G., and Crommelin, Jiskoot, W. (2004) Stabilization of proteins in dry powder formulation using supercritical fluid technology. Pharm. Res. 21:1955–1969.

    Article  CAS  Google Scholar 

  22. 22. Bodmeier, R., Wang, H., Dixon, D. J., Mawson, S., and Johnston, K. P. (1995) Polymeric microspheres prepared by spraying into compressed CO2. Pharm. Res. 12:1211–1217.

    Article  CAS  Google Scholar 

  23. 23. Lee, M. J., Kwon, J. –H., Shin, J. –S., and Kim, C. W. (2005) Microcrystallization of a-Lactalbumin, J. Crystal Growth 282:434–437.

    Article  CAS  Google Scholar 

  24. 24. Kwon, J. –H., Lee, B. –H., Lee, J. –J., and Kim, C. –W. (2004) Insulin microcrystal suspension as a long lasting formulation for pulmonary delivery. Eur. J. Pharm. Sci. 22:107–116.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this protocol

Cite this protocol

Shoyele, S.A. (2008). Engineering Protein Particles for Pulmonary Drug Delivery. In: Jain, K.K. (eds) Drug Delivery Systems. Methods in Molecular Biology™, vol 437. Humana Press. https://doi.org/10.1007/978-1-59745-210-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-210-6_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-891-1

  • Online ISBN: 978-1-59745-210-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics