Skip to main content

Part of the book series: Methods in Molecular Biology ((MIMB,volume 363))

Abstract

The physical chemistry of crystal growth can help to identify directions in which to look for improved crystal properties. In this chapter, we summarize how crystal growth depends on parameters that can be controlled experimentally, and relate them to the tools available for optimizing a particular crystal form for crystal shape, volume, and diffraction quality. Our purpose is to sketch the conceptual basis of optimization and to provide sample protocols derived from those foundations. We hope to assist even those who chose not to use systematic methods by enabling them to carry out rudimentary optimization searches armed with a better understanding of how the underlying physical chemistry operates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. James, R. W. (1967) The Optical Principles of The Diffraction of X-Rays. G. Bell and Sons LTD, London, UK.

    Google Scholar 

  2. Dobrianov, I., Finkelstein, K. D., Lemay, S. G., and Thorne, R. E. (1998) X-ray topographic studies of protein crystal perfection and growth. Acta Cryst. D54, 922–937.

    CAS  Google Scholar 

  3. Snell, E. H., Bellamy, H. D., and Borgstahl, G. E. O. (2003) Macromolecular crystal quality. Meth. Enzymol. 368, 268–287.

    Article  CAS  PubMed  Google Scholar 

  4. Garcia-Ruiz, J. M. (2003) Counter-diffusion methods for macromolecular crystallization. Meth. Enzymol. 368, 130–153.

    Article  CAS  PubMed  Google Scholar 

  5. Luft, J. R. and DeTitta, G. T. (1996) Kinetic aspects of macromolecular crystallization. Meth. Enzymol. 276, 110–131.

    Article  Google Scholar 

  6. Vekilov, P. G., Alexander, J. I., and Rosenberger, F. (1996) Nonlinear response of layer growth dynamics in the mixed kinetics-bulk transport regime. Phys. Rev. B E54, 6650–6660.

    Google Scholar 

  7. Green, A. A. (1932) Studies on the physical solutions of the chlorides and sulfates of varying concentration. J. Biol. Chem. 95, 47–66.

    Google Scholar 

  8. Ataka, M. and Tanaka, S. (1986) The growth of large, single crystals of lysozyme. Biopolymers 25, 337–350.

    Article  CAS  PubMed  Google Scholar 

  9. Retailleau, P., Riès-Kautt, M., and Ducruix, A. (1997) No salting-in of lysozyme chloride observed at low ionic strength over a large range of pH. Biophys. J. 73, 2156–2163.

    Article  CAS  PubMed  Google Scholar 

  10. Stura, E. (1999) Seeding techniques. In: Crystallization of Nucleic Acids and Proteins, A Practical Approach, (Ducruix, A., Giegé, R., eds.), IRL Press, Oxford, UK, pp. 177–207.

    Google Scholar 

  11. Ataka, M. and Michihiko, A. (1988) Systematic studies on the crystallization of lysozyme: determination and use of phase diagrams. J. Cryst. Growth 90, 86–93.

    Article  CAS  Google Scholar 

  12. Hofrichter, J., Ross, P. D., and Eaton, W. A. (1974) Kinetics and mechanism of deoxyhemoglobin S gelation: a new approach to understanding sickle cell disease. Proc. Nat. Acad. Sci. USA 71, 4864–4868.

    Article  CAS  PubMed  Google Scholar 

  13. Hofrichter, J., Ross, P. D., and Eaton, W. A. (1976) Supersaturation in sickle cell hemoglobin solutions. Proc. Nat. Acad. Sci. USA 73, 3035–3039.

    Article  CAS  PubMed  Google Scholar 

  14. Retailleau, P. (1997) Cristallogénèse de sels de lysozyme: étude des interactions en solution et de la solubilité d’un polyélectrolyte à faible force ionique (Ph.D.), Université Paris XI Orsay, December 16, 1996.

    Google Scholar 

  15. LaFont, S., Veesler, S., Astier, J. P., and Boistelle, R. (1997) Comparison of solubilities and molecular interactions of BPTI molecules giving different polymorph. J. Crystal Growth 173, 132–140.

    Article  CAS  Google Scholar 

  16. Bénas, P., Legrand, L., and Riès-Kautt, M. (2002) Strong and particular effects of cations on lysozyme chloride solubility. Acta Cryst. D58, 1582–1587.

    Google Scholar 

  17. Arakawa, T. and Timasheff, S. N. (1986) Theory of protein solubility. Meth. Enzymol. 114, 49–77.

    Article  Google Scholar 

  18. Gaucher, J.-F., Riès-Kautt, M., Reiss-Husson, F., and Ducruix, A. (1997) Solubility diagram of the Rhodobacter sphaeroides reaction center as a function of PEG concentration. FEBS Lett. 401, 113–116.

    Article  CAS  PubMed  Google Scholar 

  19. Riès-Kautt, M. and Ducruix A. (1992) Phase diagrams. In: Crystallization of Nucleic Acids and Proteins: A Practical Approach, (Ducruix, A. and Giegé, R., eds.), IRL Press, Oxford, UK, pp. 195–218.

    Google Scholar 

  20. Riès-Kautt, M. and Ducruix, A. F. (1989) Relative effectiveness of various ions on the solubility and crystal growth of lysozyme. J. Biol. Chem. 264, 745–753.

    PubMed  Google Scholar 

  21. Ingham, K. C. (1990) Precipitation of proteins with polyethylene glycol. Meth. Enzymol. 182, 301–306.

    Article  CAS  PubMed  Google Scholar 

  22. Carter, C. W., Jr. (1999) Experimental design, quantitative analysis, and the cartography of crystal growth. In: Crystallization of Nucleic Acids and Proteins, 2nd ed. (Giegé, R. and Ducruix, A., eds.), IRL Press, Oxford, UK, pp. 75–120.

    Google Scholar 

  23. Riès-Kautt, M. and Ducruix, A. (1997) Inferences drawn from physicochemical studies of crystallogenesis and precrystalline state. Meth. Enzymol. 276, 23–59.

    Article  Google Scholar 

  24. Carbonnaux, C., Riès-Kautt, M., and Ducruix, A. (1995) Relative effectiveness of various anions on the solubility of acidic Hypoderma lineatum collagenase at pH 7.2. Protein Sci. 4, 2123–2128.

    Article  CAS  PubMed  Google Scholar 

  25. Ries-Kautt, M. (1999) Strategy 2: an alternative to sparse matrix screens. In: Crystallization of Proteins: Techniques, Strategies, and Tips. A Laboratory Manual, (Bergfors, T., ed.), International University Line, La Jolla, CA.

    Google Scholar 

  26. McPherson, A. (2001) A comparison of salts for the crystallization of macromolecules. Protein Sci. 10, 418–422.

    Article  CAS  PubMed  Google Scholar 

  27. Trakhanov, S. and Quiocho, F. A. (1995) Influence of divalent cations in protein crystallization. Protein Sci. 4, 1914–1919.

    Article  CAS  PubMed  Google Scholar 

  28. Carter, C. W., Jr. (1996) A local approximation to supersaturation affords a useful coordinate transformation for the study of crystal growth. Acta Cryst. 53, 647–654.

    Google Scholar 

  29. Vekilov, P. G. (2003) Molecular mechanisms of defect formation. Meth. Enzymol. 368, 170–187.

    Article  CAS  PubMed  Google Scholar 

  30. Carter, D. C., Lim, K., Ho, J. X., et al. (1999) Lower dimer impurity incorporation may result in higher perfection of HEWL crystals grown in microgravity: case study. J. Cryst. Growth 196, 623–637.

    Article  CAS  Google Scholar 

  31. Holmes, W. M., Hurd, R. E., Reid, B. R., Rimerman, R. A., and Hatfield, G. W. (1975) Separation of transfer ribonucleic acid by sepharose chromatography using reverse salt gradients. Proc. Nat. Acad. Sci. USA 72, 1068–1071.

    Article  CAS  PubMed  Google Scholar 

  32. Gulewicz, K., Adamiak, D., and Sprinzl, M. (1985) A new approach to the crystallization of proteins. FEBS Lett. 189, 179–182.

    Article  CAS  Google Scholar 

  33. Schekman, R., Weiner, J. H., Weiner, A., and Kornberg, A. (1975) Ten proteins required for conversion of fX174 single-stranded DNA to duplex form in vitro. J. Biol. Chem. 250, 5859–5865.

    CAS  PubMed  Google Scholar 

  34. Carter, C. W., Jr, Yin, Y. (1994) Quantitative analysis in the characterization and optimization of protein crystal growth. Acta Cryst. D50, 572–590.

    CAS  Google Scholar 

  35. Chester, A., Weinreb, V., Carter, C. W., Jr., and Navaratnam, N. (2004) Optimization of apolipoprotein B mRNA editing by APOBEC1 apoenzyme and the role of its auxiliary factor, ACF. RNA 10, 1399–1411.

    Article  CAS  PubMed  Google Scholar 

  36. Yin, Y. and Carter, C. W., Jr. (1996) Incomplete factorial and response surface methods in experimental design: yield optimization of tRNATrp from in vitro T7 RNA polymerase transcription. Nucleic Acids Res. 24, 1279–1286.

    Article  CAS  PubMed  Google Scholar 

  37. Carter, C. W., Jr. (1997) Response surface methods for the optimization and improving reproducibility of crystal growth. Meth. Enzymol. 276, 74–99.

    Article  CAS  Google Scholar 

  38. Hardin, R. H. and Sloane, N. J. A. (1993) A new approach to the construction of optimal designs. J. Stat. Plan. Inference 37, 339–369.

    Article  Google Scholar 

  39. Muschol, M. and Rosenberger, F. (1997) Liquid-liquid phase separation in supersaturated lysozyme solutions and associated precipitate formation/crystallization. J. Chem. Phys. 107, 1953–1962.

    Article  CAS  Google Scholar 

  40. Carter, C. W., Jr., Doublié, S., and Coleman, D. E. (1994) Quantitative analysis of crystal growth tryptophanyl-tRNA synthetase crystal polymorphism and its relationship to catalysis. J. Mol. Biol. 238, 346–365.

    Article  CAS  PubMed  Google Scholar 

  41. SAS JMP: Scientific discovery software. (1999) In. 3.2.2 ed. Cary, NC: SAS Institute, Inc.

    Google Scholar 

  42. Wilkinson L. (1987) SYSTAT, The System for Statistics. In. 5.2.1 ed. Evanston, IL 60601: SYSTAT, Inc.

    Google Scholar 

  43. Thaller, C., Weaver, L. H., Eichele, G, Wilson, E., Karlsson, R., and Jansonius, J. (1981) Repeated seeding technique for growing large single crystals of proteins. J. Mol. Biol. 147, 465–469.

    Article  CAS  PubMed  Google Scholar 

  44. Thaller, C., Weaver, L. H., Eichele, G., Wilson, E., Karlsson, R., and Jansonius, J. (1985) Seed enlargement and repeated seeding. Meth. Enzymol. 114, 132–135.

    Article  CAS  PubMed  Google Scholar 

  45. Symersky, J., Devedjiev, Y., Moore, K., Brouillette, C., and DeLucas, L. (2002) NH3-dependent NAD+ synthetase from Bacillus subtilis at 1 Å resolution. Acta Crystallogr. D. Biol. Crystallogr. 58, 1138–1146.

    Article  PubMed  Google Scholar 

  46. Borgstahl, G., Vahedi-Faridi, E. O. A., Lovelace, J., Bellamy, H. D., and Snell, E. H. (2001) A test of macromolecular crystallization in microgravity: large well ordered insulin crystals. Acta Crystallogr. D. Biol. Crystallogr. 57, 1204–1207.

    Article  CAS  PubMed  Google Scholar 

  47. Kriminski, S., Caylor, C. L., Nonato, M. C., Finkelstein, K. D., and Thorne, R. E. (2002) Flash-cooling and annealing of protein crystals. Acta Crystallogr. D. Biol. Crystallogr. 58, 459–471.

    Article  CAS  PubMed  Google Scholar 

  48. Kriminski, S., Kazmierczak, M., and Thorne, R. E. (2003) Heat transfer from protein crystals: implications for flash-cooling and X-ray beam heating. Acta Crystallogr. D. Biol. Crystallogr. 59, 697–708.

    Article  CAS  PubMed  Google Scholar 

  49. Garman, E. F. and Doublié, S. (2003) Cryocooling of macromolecular crystals: optimisation methods. Meth. Enzymol. 368, 188–216.

    Article  CAS  PubMed  Google Scholar 

  50. Hanson, B. L., Harp, J. M., and Bunick, G. J. (2003) The well-tempered protein crystal: annealing macromolecular crystals. Meth. Enzymol. 368, 217–238.

    Article  CAS  PubMed  Google Scholar 

  51. Papanikolau, Y. and Kokkinidis, M. (1997) Solubility, crystallization and chromatographic properties of macromolecules strongly depend on substances that reduce the ionic strength of the solution. Protein Eng. 10, 847–850.

    Article  CAS  PubMed  Google Scholar 

  52. Koth, C. M., Orlicky, S. M., Larsen, S. M., and Edwards, A. M. (2003) Use of limited proteolysis to identify protein domains suitable for structural analysis. Meth. Enzymol. 368, 77–84.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Carter, C.W., Riès-Kautt, M. (2007). Improving Marginal Crystals. In: Walker, J.M., Doublié, S. (eds) Macromolecular Crystallography Protocols. Methods in Molecular Biology, vol 363. Humana Press. https://doi.org/10.1007/978-1-59745-209-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-209-0_8

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-292-6

  • Online ISBN: 978-1-59745-209-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics