Skip to main content

Oocyte Extracts for the Study of Meiotic M-M Transition

  • Protocol
Xenopus Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 322))

Abstract

In meiotic cell cycles, meiosis I (MI) is followed by meiosis II (Mil) without an intervening S phase, whereas in mitotic cell cycles, an S phase necessarily alternates with an M phase. For the study of mitotic cell cycles, extracts prepared from unfertilized and parthenogenetically activated Xenopus eggs have been very useful as they can perform the progression of mitotic cycles in vitro. To establish a cell-free system to study the regulatory mechanisms of meiotic transition from MI to Mil, extracts have been prepared from maturing Xenopus oocytes isolated from ovaries, stimulated with progesterone to induce the resumption of meiosis, and arrested at meiotic metaphase I by cold treatment. In oocyte extracts, the activity of cyclin B-Cdc2 complexes, the M phase inducer, fluctuates in the same manner as it does in maturing oocytes during the MI to Mil transition period. By the use of oocyte extracts, it has been found that incomplete inactivation of Cdc2 at the end of MI is required for meiotic M-M transition. The meiotic extract should provide a useful tool to elucidate molecular mechanisms of meiotic M to M transition, including a role of Mos/mitogen-activated protein kinase cascade in the suppression of S phase entry after MI exit. In this chapter, we describe methods for the preparation and the uses of meiotic extracts. As a comparison, we also include a protocol for the preparation of mitotic extracts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Masui, Y. and Clarke, H. J. (1979) Oocyte maturation. Int. Rev. Cytol. 57, 185–282.

    Article  CAS  PubMed  Google Scholar 

  2. Smith, L. D., (1989) The induction of oocyte maturation: transmembrane signaling events and regulation of the cell cycle. Development 107, 685–699.

    CAS  PubMed  Google Scholar 

  3. Ferrell, J. E., Jr. (1999) Xenopus oocyte maturation: new lessons from a good egg. Bioessays 21, 833–842.

    Article  PubMed  Google Scholar 

  4. Nebreda, A. R. and Ferby, I. (2000) Regulation of the meiotic cell cycle in oocytes. Curr. Opin. Cell Biol. 12, 666–675.

    Article  CAS  PubMed  Google Scholar 

  5. Mailer, M. J., Schwab, M. S., Gross, S. D., Taieb, G. F., Roberts, B. T., and Tunquist, B. J. (2000) The mechanism of CSF arrest in vertebrate oocytes. Mol. Cell. Endocrinol. 187, 173–178.

    Article  Google Scholar 

  6. Bodart, J. F., Flament, S., and Vilain, J. P. (2002) Metaphase arrest in amphibian oocytes: interaction between CSF and MPF sets the equilibrium. Mol. Reprod. Dev. 61, 570–574.

    Article  CAS  PubMed  Google Scholar 

  7. Gurdon, J. B. (1967) On the origin and persistence of a cytoplasmic state inducing nuclear DNA synthesis in frog eggs. Proc. Natl. Acad. Sci. USA 58, 545–552.

    Article  CAS  PubMed  Google Scholar 

  8. Ohsumi. K. Katagiri C. and Yanagimachi R. 1986 Development of pronuclei from human spermatozoa injected microsurgically into frog Xepus eggs. J. Exp. Zool. 237 319–325

    Article  CAS  PubMed  Google Scholar 

  9. Cox, L. S. and Leno. G. H. (1990) Extracts from eggs and oocytes of Xenopus laevis differ in their capacities for nuclear assembly and DNA replication. J. Cell Sci. 97, 177–184.

    PubMed  Google Scholar 

  10. Zhao, J. and Benbow, R. M. (1994) Inhibition of DNA replication in cell-free extracts of Xenopus laevis eggs by extracts of Xenopus laevis oocytes. Dev. Biol. 164, 52–62.

    Article  CAS  PubMed  Google Scholar 

  11. Lema’tre, J. M., Bocquet. S., and Méechali, M. (2002) Competence to replicate in the unfertilized egg is conferred by Cdc6 during meiotic maturation. Nature 419, 718–722.

    Article  Google Scholar 

  12. Whitmire. E., Khan, B., and Coué, M. (2002) Cdc6 synthesis regulates replication competence in Xenopus oocytes. Nature 419, 722–725.

    Article  CAS  PubMed  Google Scholar 

  13. DiBerardino, M. A. and Hoffner. N. J. (1982) Gene reactivation in erythrocytes: nuclear transplantation in oocytes and eggs of Rana. Science 219, 862–864.

    Article  Google Scholar 

  14. Dutnont, J. N. (1972) Oogenesis in Xenopus laevis (Daudin). I. Stages of oocyte development in laboratory maintained animals. J. Morphol. 136, 153–180.

    Article  Google Scholar 

  15. Ohsumi, K., Sawada, W., and Kishimoto. T. (1984) Meiosis-specific regulation in maturing Xenopus oocytes. J. Cell Sci. 107, 3005–3013.

    Google Scholar 

  16. Iwabuchi M., Ohsumi, K., Yamamoto, T. M., Sawada, W., and Kishimoto, T. (2000) Residual Cdc2 activity remaining at meiosis I exit is essential for meiotic M-M transition in Xenopus oocyte extracts. EMBO J. 19, 4513–4523.

    Article  CAS  PubMed  Google Scholar 

  17. Murray, A. W. and Kirschner, M. W. (1989) Cyclin synthesis drives the early embryonic cell cycle. Nature 339, 275–280.

    Article  CAS  PubMed  Google Scholar 

  18. Murray, A. W. (1991) Cell cycle extracts. Methods Cell Biol. 36, 581–605.

    Article  CAS  PubMed  Google Scholar 

  19. Yamamoto, T. M., Iwabuchi, M., Ohsumi, K., and Kishimoto T. (2005) APC/C-Cdc20-mediated degradation of cyclin B participates in CSF arrest in unfertilized Xenopus eggs. Dev. Biol. 279, 345–355.

    Article  CAS  PubMed  Google Scholar 

  20. Newport, J. and Kirschner, M. (1982) A major developmental transition in early Xenopus embryos. I. Characterization and timing of cellular changes at the midblastula stage. Cell 30, 675–686.

    Article  CAS  PubMed  Google Scholar 

  21. Gurdon, J. B. (1976) Injected nuclei in frog oocytes: fate, enlargement, and chromatin dispersal. J. Embryol. Exp. Morphol. 36, 523–540.

    CAS  PubMed  Google Scholar 

  22. Lohka, M. J. and Masui, Y. (1983) Formation in vitro of sperm pronuclei and mitotic chromosomes induced by amphibian ooplasmic components. Science 220, 719–721.

    Article  CAS  PubMed  Google Scholar 

  23. Smith, L. D., Xu, W., and Varnold, R. L. (1991) Oogenesis and oocyte isolation. Methods Cell Biol. 36, 45–60.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Ohsumi, K., Yamamoto, T.M., Iwabuchi, M. (2006). Oocyte Extracts for the Study of Meiotic M-M Transition. In: Liu, X.J. (eds) Xenopus Protocols. Methods in Molecular Biology™, vol 322. Humana Press. https://doi.org/10.1007/978-1-59745-000-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-000-3_32

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-362-6

  • Online ISBN: 978-1-59745-000-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics