Skip to main content

Considerations for Modeling Proteus mirabilis Swarming

  • Protocol
  • First Online:
Proteus mirabilis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2021))

  • 1854 Accesses

Abstract

In this chapter we provide some initial guidance to experimentalists on how they might go about creating mathematical representations of their systems under study. Because the interests and goals of different researchers can differ, we try to provide broad instruction on the creation and use of mathematical models. We provide a brief overview of some modeling that has been done with Proteus mirabilis colonies, and discuss the goals of modeling. We suggest ways that collaborative teams may communicate with one another more effectively, and how they can build more confidence in their model results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A model that includes mathematical representations of what generates the dedifferentiation and dedifferentiation cycle and of how the swarmers generate the concentric rings would, in some circles, be referred to as “multiscale.”

  2. 2.

    Available at the time of writing at www.compucell3d.org.

References

  1. Aronson DG (1985) The role of diffusion in mathematical population biology: skellam revisited. In: Mathematics in biology and medicine: proceedings of an international conference held in Bari, July 18–22, 1983, pp 2–6

    Google Scholar 

  2. Ayati BP (2000) A variable time step method for an age-dependent population model with nonlinear diffusion. SIAM J Numer Anal 37(5):1571–1589

    Article  Google Scholar 

  3. Ayati BP (2006) A structured-population model of Proteus mirabilis swarm-colony development. J Math Biol 52(1):93–114

    Article  Google Scholar 

  4. Ayati BP (2007) Modeling and simulation of Age- and space-structured biological systems. In: Mahdavi K, Culshaw R, Boucher J (eds) Current developments in mathematical biology. World Scientific, Singapore, pp 107–130

    Chapter  Google Scholar 

  5. Ayati BP (2007) Modeling the role of the cell cycle in regulating Proteus mirabilis swarm-colony development. Appl Math Lett 20(8):913–918

    Article  Google Scholar 

  6. Ayati BP (2009) A comparison of the dynamics of the structured cell population in virtual and experimental Proteus mirabilis swarm colonies. Appl Numer Math 59(3–4):487–494. https://doi.org/10.1016/j.apnum.2008.03.023

    Article  Google Scholar 

  7. Ayati BP, Dupont TF (2002) Galerkin methods in age and space for a population model with nonlinear diffusion. SIAM J Numer Anal 40(3):1064–1076

    Article  Google Scholar 

  8. Ayati BP Dupont TF (2005) Convergence of a step-doubling Galerkin method for parabolic problems. Math Comput 74(251):1053–1066

    Article  Google Scholar 

  9. Collis J, Connor AJ, Paczkowski M, Kannan P, Pitt-Francis J, Byrne HM, Hubbard ME (2017) Bayesian calibration, validation and uncertainty quantification for predictive modelling of tumour growth: a tutorial. Bull Math Biol 79(4):939–974. https://doi.org/10.1007/s11538-017-0258-5

    Article  Google Scholar 

  10. Coyle J, Nigam N (2016) High-order discontinuous Galerkin methods for a class of transport equations with structured populations. Comput Math Appl 72(3):1–17. https://doi.org/10.1016/j.camwa.2016.05.024

    Article  Google Scholar 

  11. Czirók A, Matsushita M, Vicsek T (2001) Theory of periodic swarming of bacteria: application to Proteus mirabilis. Phys Rev E 63(3):31911–31915

    Article  Google Scholar 

  12. Esipov SE, Shapiro JA (1998) Kinetic model of Proteus mirabilis swarm colony development. J Math Biol 36:249–268

    Article  Google Scholar 

  13. Frénod E, Sire O (2009) An explanatory model to validate the way water activity rules periodic terrace generation in Proteus mirabilis swarm. J Math Biol 59(4):439–466. https://doi.org/10.1007/s00285-008-0235-6

    Article  Google Scholar 

  14. Graham JM, Ayati BP, Ding L, Ramakrishnan PS, Martin JA (2012) Reaction-diffusion-delay model for EPO/TNF-α interaction in articular cartilage lesion abatement. Biol Direct 7(1):9–9. https://doi.org/10.1186/1745-6150-7-9

    Article  CAS  Google Scholar 

  15. Kapitanov GI, Wang X, Ayati BP, Brouillette MJ, Martin JA (2016) Linking cellular and mechanical processes in articular cartilage lesion formation: a mathematical model. Front Bioeng Biotechnol 4(80):1–14. https://doi.org/10.1016/j.joca.2014.04.023

    Google Scholar 

  16. Laz PJ, Browne M (2010) A review of probabilistic analysis in orthopaedic biomechanics. Proc Inst Mech Eng H J Eng Med 224(8):927–943. https://doi.org/10.1243/09544119JEIM739

    Article  CAS  Google Scholar 

  17. Matsuyama T, Takagi Y, Nakagawa Y, Itoh H, Wakita J, Matsushita M (2000) Dynamic aspects of the structured cell population in a swarming colony of Proteus mirabilis. J Bacteriol 182(2):385–393

    Article  CAS  Google Scholar 

  18. Medvedev GS, Kaper TJ, Kopell N (2000) A reaction-diffusion equation with periodic front dynamics. SIAM J Appl Math 60(5):1601–1638

    Article  Google Scholar 

  19. Peterson RT (1989) A field guide to the birds: eastern and central North America. Houghton Mifflin Harcourt, Boston

    Google Scholar 

  20. Rauprich O, Matsushita M, Weijer CJ, Siegert F, Esipov SE, Shapiro JA (1996) Periodic phenomena in Proteus mirabilis swarm colony development. J Bacteriol 178(22):6525

    Article  CAS  Google Scholar 

  21. Smith RC (2014) Uncertainty quantification: theory, implementation, and applications. SIAM, Philadelphia

    Google Scholar 

  22. Swat MH, Thomas GL, Belmonte JM, Shirinifard A, Hmeljak D, Glazier JA (2012) Multi-scale modeling of tissues using CompuCell3D. In: Methods in cell biology, vol 110. Elsevier, Amsterdam, pp 325–366

    Chapter  Google Scholar 

  23. Van Schepdael A, Carlier A, Geris L (2016) Sensitivity analysis by design of experiments. In: Uncertainty in biology. Springer, Cham, pp 327–366

    Chapter  Google Scholar 

  24. Xue C, Budrene EO, Othmer HG (2011) Radial and spiral stream formation in Proteus mirabilis colonies. PLoS Comput Biol 7(12):e1002332. https://doi.org/10.1371/journal.pcbi.1002332

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce P. Ayati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ayati, B.P. (2019). Considerations for Modeling Proteus mirabilis Swarming. In: Pearson, M. (eds) Proteus mirabilis. Methods in Molecular Biology, vol 2021. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9601-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9601-8_24

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9600-1

  • Online ISBN: 978-1-4939-9601-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics