Skip to main content

An In Vitro Bladder Model for Studying Catheter-Associated Urinary Tract Infection and Associated Analysis of Biofilms

  • Protocol
  • First Online:
Proteus mirabilis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2021))

Abstract

Urethral catheters are among the most widely used medical devices, applied to manage a wide range of conditions in hospital, community, and care home settings. In long-term catheterized individuals, infection with Proteus mirabilis frequently complicates the care of patients owing to formation of extensive crystalline biofilms. Here we describe the use of an in vitro bladder model of the catheterized urinary tract and associated analyses to study P. mirabilis crystalline biofilm formation. The model originally described by Stickler et al. (1999, 310:494–501, Methods Enzymol) replicates a complete sterile closed drainage system as used in clinical practice, and permits formation of biofilms directly on catheters under conditions representative of those encountered in vivo. Models may be used to replicate either established infection or early stage colonization, and we describe a range of associated methods for quantification and visualization of biofilms formed on catheters. These methods are also easily adapted to study catheter-associated biofilm formation by other urinary tract pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weinstein RA, Darouiche RO (2001) Device-associated infections: a macroproblem that starts with microadherence. Clin Infect Dis 33(9):1567–1572. https://doi.org/10.1086/323130

    Article  Google Scholar 

  2. Getliffe K, Newton T (2006) Catheter-associated urinary tract infection in primary and community health care. Age Ageing 35(5):477–481. https://doi.org/10.1093/ageing/afl052

    Article  PubMed  Google Scholar 

  3. Loveday HP, Wilson JA, Pratt RJ, Golsorkhi M, Tingle A, Bak A, Browne J, Prieto J, Wilcox M, UK Dept of Health (2014) epic3: national evidence-based guidelines for preventing healthcare-associated infections in NHS hospitals in England. J Hosp Infect 86 Suppl 1:S1–70. https://doi.org/10.1016/S0195-6701(13)60012-2

    Article  Google Scholar 

  4. Stickler DJ (2014) Clinical complications of urinary catheters caused by crystalline biofilms: something needs to be done. J Intern Med 276(2):120–129. https://doi.org/10.1111/joim.12220

    Article  CAS  PubMed  Google Scholar 

  5. McNulty C, Freeman E, Smith G, Gunn K, Foy C, Tompkins D, Brady A, Cartwright K (2003) Prevalence of urinary catheterization in UK nursing homes. J Hosp Infect 55(2):119–123. https://doi.org/10.1016/S0195-6701(03)00224-X

    Article  CAS  PubMed  Google Scholar 

  6. Jacobsen SM, Stickler DJ, Mobley HLT, Shirtliff ME (2008) Complicated catheter-associated urinary tract infections due to Escherichia coli and Proteus mirabilis. Clin Microbiol Rev 21(1):26–59. https://doi.org/10.1128/CMR.00019-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stamm WE (1991) Catheter-associated urinary tract infections: epidemiology, pathogenesis, and prevention. Am J Med 91(3B):65S–71S

    Article  CAS  Google Scholar 

  8. Mobley HLT (1996) Virulence of Proteus mirabilis. In: Mobley HLT, Warren JW (eds) Urinary tract infections: molecular pathogenesis and clinical management. ASM Press, Washington, DC, pp 245–265

    Google Scholar 

  9. Stickler DJ (2008) Bacterial biofilms in patients with indwelling urinary catheters. Nat Clin Pract Urol 5:598. https://doi.org/10.1038/ncpuro1231

    Article  CAS  PubMed  Google Scholar 

  10. Warren JW (1991) The catheter and urinary tract infection. Med Clin North Am 75(2):481–493

    Article  CAS  Google Scholar 

  11. Griffith DP, Musher DM, Itin C (1976) Urease. The primary cause of infection-induced urinary stones. Investig Urol 13(5):346–350

    CAS  Google Scholar 

  12. Jones BD, Mobley HLT (1987) Genetic and biochemical diversity of ureases of Proteus, Providencia, and Morganella species isolated from urinary tract infection. Infect Immun 55(9):2198–2203

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Holling N, Dedi C, Jones CE, Hawthorne JA, Hanlon GW, Salvage JP, Patel BA, Barnes LM, Jones BV (2014) Evaluation of environmental scanning electron microscopy for analysis of Proteus mirabilis crystalline biofilms in situ on urinary catheters. FEMS Microbiol Lett 355(1):20–27. https://doi.org/10.1111/1574-6968.12451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Holling N, Lednor D, Tsang S, Bissell A, Campbell L, Nzakizwanayo J, Dedi C, Hawthorne JA, Hanlon G, Ogilvie LA, Salvage JP, Patel BA, Barnes LM, Jones BV (2014) Elucidating the genetic basis of crystalline biofilm formation in Proteus mirabilis. Infect Immun 82(4):1616–1626. https://doi.org/10.1128/IAI.01652-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kunin CM (1997) Urinary tract infections. Detection, prevention, and management, 5th edn. Williams & Wilkins, Baltimore, pp 226–278

    Google Scholar 

  16. Clapham L, McLean RJC, Nickel JC, Downey J, Costerton JW (1990) The influence of bacteria on struvite crystal habit and its importance in urinary stone formation. J Cryst Growth 104(2):475–484. https://doi.org/10.1016/0022-0248(90)90150-J

    Article  CAS  Google Scholar 

  17. Dumanski AJ, Hedelin H, Edin-Liljegren A, Beauchemin D, McLean RJ (1994) Unique ability of the Proteus mirabilis capsule to enhance mineral growth in infectious urinary calculi. Infect Immun 62(7):2998–3003

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Cox AJ, Hukins DWL (1989) Morphology of mineral deposits on encrusted urinary catheters investigated by scanning electron microscopy. J Urol 142(5):1347–1350. https://doi.org/10.1016/S0022-5347(17)39095-X

    Article  CAS  PubMed  Google Scholar 

  19. Stickler DJ, Morris NS, Winters C (1999) Simple physical model to study formation and physiology of biofilms on urethral catheters. Methods Enzymol 310:494–501

    Article  CAS  Google Scholar 

  20. Nzakizwanayo J, Hanin A, Alves DR, McCutcheon B, Dedi C, Salvage J, Knox K, Stewart B, Metcalfe A, Clark J, Gilmore BF, Gahan CGM, Jenkins ATA, Jones BV (2016) Bacteriophage can prevent encrustation and blockage of urinary catheters by Proteus mirabilis. Antimicrob Agents Chemother 60(3):1530–1536. https://doi.org/10.1128/AAC.02685-15

    Article  Google Scholar 

  21. Nzakizwanayo J, Scavone P, Jamshidi S, Hawthorne JA, Pelling H, Dedi C, Salvage JP, Hind CK, Guppy FM, Barnes LM, Patel BA, Rahman KM, Sutton MJ, Jones BV (2017) Fluoxetine and thioridazine inhibit efflux and attenuate crystalline biofilm formation by Proteus mirabilis. Sci Rep 7(1):12222. https://doi.org/10.1038/s41598-017-12445-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Drew SJ (2014) Clefting syndromes. Atlas Oral Maxillofac Surg Clin North Am 22(2):175–181. https://doi.org/10.1016/j.cxom.2014.05.001

    Article  PubMed  Google Scholar 

  23. Jones BV, Mahenthiralingam E, Sabbuba NA, Stickler DJ (2005) Role of swarming in the formation of crystalline Proteus mirabilis biofilms on urinary catheters. J Med Microbiol 54(Pt 9):807–813

    Article  Google Scholar 

  24. Stickler DJ, Morgan SD (2008) Observations on the development of the crystalline bacterial biofilms that encrust and block Foley catheters. J Hosp Infect 69(4):350–360. https://doi.org/10.1016/j.jhin.2008.04.031

    Article  CAS  PubMed  Google Scholar 

  25. Macleod SM, Stickler DJ (2007) Species interactions in mixed-community crystalline biofilms on urinary catheters. J Med Microbiol 56.(Pt 11:1549–1557. https://doi.org/10.1099/jmm.0.47395-0

    Article  PubMed  Google Scholar 

  26. Stickler D, Morris N, Moreno MC, Sabbuba N (1998) Studies on the formation of crystalline bacterial biofilms on urethral catheters. Eur J Clin Microbiol Infect Dis 17(9):649–652

    Article  CAS  Google Scholar 

  27. Morris NS, Stickler DJ, Winters C (1997) Which indwelling urethral catheters resist encrustation by Proteus mirabilis biofilms? Br J Urol 80(1):58–63

    Article  CAS  Google Scholar 

  28. Milo S, Thet NT, Liu D, Nzakizwanayo J, Jones BV, Jenkins ATA (2016) An in-situ infection detection sensor coating for urinary catheters. Biosens Bioelectron 81:166–172. https://doi.org/10.1016/j.bios.2016.02.059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stickler DJ, Jones SM, Adusei GO, Waters MG (2006) A sensor to detect the early stages in the development of crystalline Proteus mirabilis biofilm on indwelling bladder catheters. J Clin Microbiol 44(4):1540–1542. https://doi.org/10.1128/JCM.44.4.1540-1542.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Morris NS, Stickler DJ (1998) The effect of urease inhibitors on the encrustation of urethral catheters. Urol Res 26(4):275–279

    Article  CAS  Google Scholar 

  31. Stickler DJ, Jones GL, Russell AD (2003) Control of encrustation and blockage of Foley catheters. Lancet 361(9367):1435–1437

    Article  CAS  Google Scholar 

  32. Milo S, Hathaway H, Nzakizwanayo J, Alves DR, Esteban PP, Jones BV, Jenkins ATA (2017) Prevention of encrustation and blockage of urinary catheters by Proteus mirabilis via pH-triggered release of bacteriophage. J Mater Chem B 5(27):5403–5411. https://doi.org/10.1039/C7TB01302G

    Article  CAS  Google Scholar 

  33. O’Toole GA, Kolter R (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30(2):295–304

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian V. Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nzakizwanayo, J., Pelling, H., Milo, S., Jones, B.V. (2019). An In Vitro Bladder Model for Studying Catheter-Associated Urinary Tract Infection and Associated Analysis of Biofilms. In: Pearson, M. (eds) Proteus mirabilis. Methods in Molecular Biology, vol 2021. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9601-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9601-8_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9600-1

  • Online ISBN: 978-1-4939-9601-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics