Skip to main content

Siderophore Detection Using Chrome Azurol S and Cross-Feeding Assays

  • Protocol
  • First Online:
Proteus mirabilis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2021))

Abstract

More than 500 siderophores that bind ferric iron have been characterized and grouped by type based on their chemical structure. The chrome azurol S (CAS) assay is a universal colorimetric method that detects siderophores independent of their structure. In this assay, siderophores scavenge iron from an Fe-CAS-hexadecyltrimethylammonium bromide complex, and subsequent release of the CAS dye results in a color change from blue to orange. Solution-based experiments with CAS result in a quantitative measure of siderophore production, while an observable color change on CAS agar plates can be performed for qualitative detection of siderophores. Cross-feeding assays are another useful method to detect and characterize siderophores produced by bacteria. Under iron-limiting conditions, cross-feeding assays test the ability of an indicator strain to grow when supplied with a specific siderophore (from a test strain) to which it has a cognate receptor required for import into the cell. The cross-feeding assay can be tested with a variety of wild-type strains, siderophore biosynthesis mutants, and siderophore receptor mutants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Braun V (1995) Energy-coupled transport and signal transduction through the gram-negative outer membrane via TonB-ExbB-ExbD-dependent receptor proteins. FEMS Microbiol Rev 16(4):295–307

    Article  CAS  Google Scholar 

  2. Tuckman M, Osburne MS (1992) In vivo inhibition of TonB-dependent processes by a TonB box consensus pentapeptide. J Bacteriol 174(1):320–323

    Article  CAS  Google Scholar 

  3. Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71(3):413–451. https://doi.org/10.1128/MMBR.00012-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pollack JR, Neilands JB (1970) Enterobactin, an iron transport compound from Salmonella typhimurium. Biochem Biophys Res Commun 38(5):989–992

    Article  CAS  Google Scholar 

  5. Hantke K, Nicholson G, Rabsch W, Winkelmann G (2003) Salmochelins, siderophores of Salmonella enterica and uropathogenic Escherichia coli strains, are recognized by the outer membrane receptor IroN. Proc Natl Acad Sci U S A 100(7):3677–3682. https://doi.org/10.1073/pnas.0737682100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bister B, Bischoff D, Nicholson GJ, Valdebenito M, Schneider K, Winkelmann G, Hantke K, Sussmuth RD (2004) The structure of salmochelins: C-glucosylated enterobactins of Salmonella enterica. Biometals 17(4):471–481

    Article  CAS  Google Scholar 

  7. Muller G, Matzanke BF, Raymond KN (1984) Iron transport in Streptomyces pilosus mediated by ferrichrome siderophores, rhodotorulic acid, and enantio-rhodotorulic acid. J Bacteriol 160(1):313–318

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Meiwes J, Fiedler HP, Haag H, Zahner H, Konetschny-Rapp S, Jung G (1990) Isolation and characterization of staphyloferrin A, a compound with siderophore activity from Staphylococcus hyicus DSM 20459. FEMS Microbiol Lett 55(1–2):201–205

    Article  CAS  Google Scholar 

  9. Guerinot ML, Meidl EJ, Plessner O (1990) Citrate as a siderophore in Bradyrhizobium japonicum. J Bacteriol 172(6):3298–3303

    Article  CAS  Google Scholar 

  10. Drechsel H, Stephan H, Lotz R, Haag H, Zahner H, Hantke K, Jung G (1995) Structure elucidation of yersiniabactin, a siderophore from highly virulent Yersinia strains. Liebigs Ann 10:1727–1733

    Article  Google Scholar 

  11. Gibson F, Magrath DI (1969) The isolation and characterization of a hydroxamic acid (aerobactin) formed by Aerobacter aerogenes 62-I. Biochim Biophys Acta 192(2):175–184

    Article  CAS  Google Scholar 

  12. Miles AA, Khimji PL (1975) Enterobacterial chelators of iron: their occurrence, detection, and relation to pathogenicity. J Med Microbiol 8(4):477–490. https://doi.org/10.1099/00222615-8-4-477

    Article  CAS  PubMed  Google Scholar 

  13. Evanylo LP, Kadis S, Maudsley JR (1984) Siderophore production by Proteus mirabilis. Can J Microbiol 30(8):1046–1051

    Article  CAS  Google Scholar 

  14. Arnow LE (1937) Colorimetric determination of the components of 3,4-dihydroxyphenylalanine tyrosine mixtures. J Biol Chem 118(2):531–537

    CAS  Google Scholar 

  15. Csaky TZ (1948) On the estimation of bound hydroxylamine in biological materials. Acta Chem Scand 2(5–6):450–454. https://doi.org/10.3891/acta.chem.scand.02-0450

    Article  CAS  Google Scholar 

  16. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160(1):47–56. https://doi.org/10.1016/0003-2697(87)90612-9

    Article  CAS  PubMed  Google Scholar 

  17. Himpsl SD, Pearson MM, Arewång CJ, Nusca TD, Sherman DH, Mobley HLT (2010) Proteobactin and a yersiniabactin-related siderophore mediate iron acquisition in Proteus mirabilis. Mol Microbiol 78(1):138–157. https://doi.org/10.1111/j.1365-2958.2010.07317.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Neidhardt FC, Bloch PL, Smith DF (1974) Culture medium for enterobacteria. J Bacteriol 119(3):736–747

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Armbruster CE, Hodges SA, Mobley HLT (2013) Initiation of swarming motility by Proteus mirabilis occurs in response to specific cues present in urine and requires excess L-glutamine. J Bacteriol 195(6):1305–1319. https://doi.org/10.1128/JB.02136-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Torres AG, Redford P, Welch RA, Payne SM (2001) TonB-dependent systems of uropathogenic Escherichia coli: aerobactin and heme transport and TonB are required for virulence in the mouse. Infect Immun 69(10):6179–6185. https://doi.org/10.1128/IAI.69.10.6179-6185.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. van Asbeck BS, Marcelis JH, Marx JJ, Struyvenberg A, van Kats JH, Verhoef J (1983) Inhibition of bacterial multiplication by the iron chelator deferoxamine: potentiating effect of ascorbic acid. Eur J Clin Microbiol 2(5):426–431

    Article  Google Scholar 

  22. Keberle H (1964) The biochemistry of desferrioxamine and its relation to iron metabolism. Ann N Y Acad Sci 119:758–768

    Article  CAS  Google Scholar 

  23. Belas R, Erskine D, Flaherty D (1991) Transposon mutagenesis in Proteus mirabilis. J Bacteriol 173(19):6289–6293

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Shelly Payne for helpful insight on the CAS agar protocol, Tyler Nusca for chelex-treated casamino acids and lyophilization of samples used in the CAS assay described in this protocol, and Alfredo Torres for generously providing the CFT073 entF::kan iucB::cam strain. We also thank Christopher Alteri for insight on designing the cross-feeding assay for P. mirabilis and Erin Garcia for construction of E. coli 536 mutants entF::kan and entF ybtS::kan. This work was supported in part by the Public Health Service Grants AI043360 and AI059722 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie D. Himpsl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Himpsl, S.D., Mobley, H.L.T. (2019). Siderophore Detection Using Chrome Azurol S and Cross-Feeding Assays. In: Pearson, M. (eds) Proteus mirabilis. Methods in Molecular Biology, vol 2021. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9601-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9601-8_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9600-1

  • Online ISBN: 978-1-4939-9601-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics