Skip to main content

Considerations for Identifying Endogenous Protein Complexes from Tissue via Immunoaffinity Purification and Quantitative Mass Spectrometry

  • Protocol
  • First Online:
Mass Spectrometry of Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1977))

Abstract

Protein complexes perform key roles in nearly all aspects of biology. Identification of the composition of these complexes offers insights into how different cellular processes are carried out. The use of affinity purification coupled to mass spectrometry has become a method of choice for identifying protein-protein interactions, but has been most frequently applied to cell model systems using tagged and overexpressed bait proteins. Although valuable, this approach can create several potential artifacts due to the presence of a tag on a protein and the higher abundance of the protein of interest (bait). The isolation of endogenous proteins using antibodies raised against the proteins of interest instead of an epitope tag offers a means to examine protein interactions in any cellular or animal model system and without the caveats of overexpressed, tagged proteins. Although conceptually simple, the limited use of this approach has been primarily driven by challenges associated with finding adequate antibodies and experimental conditions for effective isolations. In this chapter, we present a protocol for the optimization of lysis conditions, antibody evaluation, affinity purification, and ultimately identification of protein complexes from endogenous immunoaffinity purifications using quantitative mass spectrometry. We also highlight the increased use of targeted mass spectrometry analyses, such as parallel reaction monitoring (PRM) for orthogonal validation of protein isolation and interactions initially identified via data-dependent mass spectrometry analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Joshi P, Greco TM, Guise AJ et al (2013) The functional interactome landscape of the human histone deacetylase family. Mol Syst Biol 9:672

    Article  Google Scholar 

  2. Budayeva HG, Cristea IM (2016) Human Sirtuin 2 localization, transient interactions, and impact on the proteome point to its role in intracellular trafficking. Mol Cell Proteomics 15(10):3107–3125

    Article  CAS  Google Scholar 

  3. Diner BA, Li T, Greco TM et al (2015) The functional interactome of PYHIN immune regulators reveals IFIX is a sensor of viral DNA. Mol Syst Biol 11(1):787

    Article  Google Scholar 

  4. Kohli P, Bartram MP, Habbig S et al (2014) Label-free quantitative proteomic analysis of the YAP/TAZ interactome. Am J Physiol Cell Physiol 306(9):C805–C818

    Article  CAS  Google Scholar 

  5. Huttlin EL, Ting L, Bruckner RJ et al (2015) The BioPlex network: a systematic exploration of the human interactome. Cell 162(2):425–440

    Article  CAS  Google Scholar 

  6. Hubner NC, Bird AW, Cox J et al (2010) Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo protein interactions. J Cell Biol 189(4):739–754

    Article  CAS  Google Scholar 

  7. Li X, Tran KM, Aziz KE et al (2016) Defining the protein-protein interaction network of the human protein tyrosine phosphatase family. Mol Cell Proteomics 15(9):3030–3044

    Article  CAS  Google Scholar 

  8. Scifo E, Szwajda A, Soliymani R et al (2015) Quantitative analysis of PPT1 interactome in human neuroblastoma cells. Data Brief 4:207–216

    Article  Google Scholar 

  9. Yadav L, Tamene F, Goos H et al (2017) Systematic analysis of human protein phosphatase interactions and dynamics. Cell Syst 4(4):430–444 e5

    Article  CAS  Google Scholar 

  10. Oda Y, Huang K, Cross FR et al (1999) Accurate quantitation of protein expression and site-specific phosphorylation. Proc Natl Acad Sci U S A 96(12):6591–6596

    Article  CAS  Google Scholar 

  11. Ong SE, Blagoev B, Kratchmarova I et al (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5):376–386

    Article  CAS  Google Scholar 

  12. Tackett AJ, DeGrasse JA, Sekedat MD et al (2005) I-DIRT, a general method for distinguishing between specific and nonspecific protein interactions. J Proteome Res 4(5):1752–1756

    Article  CAS  Google Scholar 

  13. Wang X, Huang L (2008) Identifying dynamic interactors of protein complexes by quantitative mass spectrometry. Mol Cell Proteomics 7(1):46–57

    Article  Google Scholar 

  14. Greco TM, Guise AJ, Cristea IM (2016) Determining the composition and stability of protein complexes using an integrated label-free and stable isotope labeling strategy. Methods Mol Biol 1410:39–63

    Article  CAS  Google Scholar 

  15. Wang X, Huang L (2014) Defining dynamic protein interactions using SILAC-based quantitative mass spectrometry. Methods Mol Biol 1188:191–205

    Article  Google Scholar 

  16. Federspiel JD, Codreanu SG, Palubinsky AM et al (2016) Assembly dynamics and stoichiometry of the apoptosis signal-regulating kinase (ASK) signalosome in response to electrophile stress. Mol Cell Proteomics 15(6):1947–1961

    Article  CAS  Google Scholar 

  17. Toyama BH, Savas JN, Park SK et al (2013) Identification of long-lived proteins reveals exceptional stability of essential cellular structures. Cell 154(5):971–982

    Article  CAS  Google Scholar 

  18. Zanivan S, Krueger M, Mann M (2012) In vivo quantitative proteomics: the SILAC mouse. Methods Mol Biol 757:435–450

    Article  Google Scholar 

  19. Kennedy L, Kaltenbrun E, Greco TM et al (2017) Formation of a TBX20-CASZ1 protein complex is protective against dilated cardiomyopathy and critical for cardiac homeostasis. PLoS Genet 13(9):e1007011

    Article  Google Scholar 

  20. Crow MS, Cristea IM (2017) Human antiviral protein IFIX suppresses viral gene expression during herpes simplex virus 1 (HSV-1) infection and is counteracted by virus-induced proteasomal degradation. Mol Cell Proteomics 16(4 suppl 1):S200–s214

    Article  Google Scholar 

  21. Diner BA, Lum KK, Toettcher JE et al (2016) Viral DNA sensors IFI16 and cyclic GMP-AMP synthase possess distinct functions in regulating viral gene expression, immune defenses, and apoptotic responses during Herpesvirus infection. MBio 7(6):e01553-16

    Article  CAS  Google Scholar 

  22. Jager S, Cimermancic P, Gulbahce N et al (2011) Global landscape of HIV-human protein complexes. Nature 481(7381):365–370

    Article  Google Scholar 

  23. Goldfarb D, Hast BE, Wang W et al (2014) Spotlite: web application and augmented algorithms for predicting co-complexed proteins from affinity purification—mass spectrometry data. J Proteome Res 13(12):5944–5955

    Article  CAS  Google Scholar 

  24. Choi H, Larsen B, Lin ZY et al (2011) SAINT: probabilistic scoring of affinity purification—mass spectrometry data. Nat Methods 8(1):70–73

    Article  CAS  Google Scholar 

  25. Mellacheruvu D, Wright Z, Couzens AL et al (2013) The CRAPome: a contaminant repository for affinity purification-mass spectrometry data. Nat Methods 10(8):730–736

    Article  CAS  Google Scholar 

  26. Sowa ME, Bennett EJ, Gygi SP et al (2009) Defining the human deubiquitinating enzyme interaction landscape. Cell 138(2):389–403

    Article  CAS  Google Scholar 

  27. Armean IM, Lilley KS, Trotter MW (2013) Popular computational methods to assess multiprotein complexes derived from label-free affinity purification and mass spectrometry (AP-MS) experiments. Mol Cell Proteomics 12(1):1–13

    Article  Google Scholar 

  28. Teo G, Liu G, Zhang J et al (2014) SAINTexpress: improvements and additional features in Significance Analysis of INTeractome software. J Proteome 100:37–43

    Article  CAS  Google Scholar 

  29. MacLean B, Tomazela DM, Shulman N et al (2010) Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26(7):966–968

    Article  CAS  Google Scholar 

  30. Cristea IM, Williams R, Chait BT et al (2005) Fluorescent proteins as proteomic probes. Mol Cell Proteomics 4(12):1933–1941

    Article  CAS  Google Scholar 

  31. Conlon FL, Miteva Y, Kaltenbrun E et al (2012) Immunoisolation of protein complexes from Xenopus. Methods Mol Biol 917:369–390

    Article  CAS  Google Scholar 

  32. Wessel D, Flugge UI (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138(1):141–143

    Article  CAS  Google Scholar 

  33. Ishihama Y, Rappsilber J, Mann M (2006) Modular stop and go extraction tips with stacked disks for parallel and multidimensional peptide fractionation in proteomics. J Proteome Res 5(4):988–994

    Article  CAS  Google Scholar 

  34. Li T, Chen J, Cristea IM (2013) Human cytomegalovirus tegument protein pUL83 inhibits IFI16-mediated DNA sensing for immune evasion. Cell Host Microbe 14(5):591–599

    Article  CAS  Google Scholar 

  35. Alm T, von Feilitzen K, Lundberg E et al (2014) A chromosome-centric analysis of antibodies directed toward the human proteome using Antibodypedia. J Proteome Res 13(3):1669–1676

    Article  CAS  Google Scholar 

  36. Persson H, Preger C, Marcon E et al (2017) Antibody validation by immunoprecipitation followed by mass spectrometry analysis. Methods Mol Biol 1575:175–187

    Article  CAS  Google Scholar 

  37. Uhlen M, Bandrowski A, Carr S et al (2016) A proposal for validation of antibodies. Nat Methods 13(10):823–827

    Article  CAS  Google Scholar 

  38. Mali S, Moree WJ, Mitchell M et al (2016) Observations on different resin strategies for affinity purification mass spectrometry of a tagged protein. Anal Biochem 515:26–32

    Article  CAS  Google Scholar 

  39. Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    Article  CAS  Google Scholar 

  40. Cline MS, Smoot M, Cerami E et al (2007) Integration of biological networks and gene expression data using Cytoscape. Nat Protoc 2(10):2366–2382

    Article  CAS  Google Scholar 

  41. Diner BA, Lum KK, Javitt A et al (2015) Interactions of the antiviral factor interferon gamma-inducible protein 16 (IFI16) mediate immune signaling and herpes simplex virus-1 immunosuppression. Mol Cell Proteomics 14(9):2341–2356

    Article  CAS  Google Scholar 

  42. Huttlin EL, Bruckner RJ, Paulo JA et al (2017) Architecture of the human interactome defines protein communities and disease networks. Nature 545(7655):505–509

    Article  CAS  Google Scholar 

  43. Couzens AL, Knight JD, Kean MJ et al (2013) Protein interaction network of the mammalian Hippo pathway reveals mechanisms of kinase-phosphatase interactions. Sci Signal 6(302):rs15

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful for funding from the CHDI foundation and from the NIH (GM114141 and HL126509). We thank Todd M. Greco and Elizabeth A. Rowland for helpful comments in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ileana M. Cristea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Federspiel, J.D., Cristea, I.M. (2019). Considerations for Identifying Endogenous Protein Complexes from Tissue via Immunoaffinity Purification and Quantitative Mass Spectrometry. In: Evans, C., Wright, P., Noirel, J. (eds) Mass Spectrometry of Proteins. Methods in Molecular Biology, vol 1977. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9232-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9232-4_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9231-7

  • Online ISBN: 978-1-4939-9232-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics