Skip to main content

Cell Population Model to Track Stochastic Cellular Decision-Making During Differentiation

  • Protocol
  • First Online:
Computational Stem Cell Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1975))

  • 1601 Accesses

Abstract

Human pluripotent stem cells are defined by their potential to give rise to all of the lineages of an embryo proper. Guiding the differentiation of embryonic stem cells or induced pluripotent stem cells can be achieved by exposing them to a succession of signaling conditions meant to mimic developmental milieus. However, achieving a quantitative understanding of the relationship between proliferation, cell death, and commitment has been difficult due to the inherent heterogeneity of pluripotent stem cells and their differentiation. Here, we describe a computational modeling approach to track the dynamics of germ layer commitment of human embryonic stem cells. We demonstrate that simulations using this model yield specific hypotheses regarding proliferation, cell death, and commitment and that these predictions are consistent with experimental measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomson JA et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    CAS  Google Scholar 

  2. Reubinoff BE et al (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotech 18(4):399–404

    CAS  Google Scholar 

  3. Grapin-Botton A (2008) Endoderm specification. In: Girard L (ed) Stem book. H.S.C.I, Cambridge

    Google Scholar 

  4. Wells JM, Melton DA (1999) Vertebrate endoderm development. Annu Rev Cell Dev Biol 15(1):393–410

    CAS  Google Scholar 

  5. Grapin-Botton A, Melton DA (2000) Endoderm development: from patterning to organogenesis. Trends Genet 16(3):124–130

    CAS  Google Scholar 

  6. de Caestecker M (2004) The transforming growth factor-β superfamily of receptors. Cytokine Growth Factor Rev 15(1):1–11

    Google Scholar 

  7. Takenaga M, Fukumoto M, Hori Y (2007) Regulated Nodal signaling promotes differentiation of the definitive endoderm and mesoderm from ES cells. J Cell Sci 120:13

    Google Scholar 

  8. Kubo A, Shinozaki K, Shannon JM et al (2004) Development of definitive endoderm from embryonic stem cells in culture. Development 131:12

    Google Scholar 

  9. D'Amour KA et al (2005) Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotech 23(12):1534–1541

    CAS  Google Scholar 

  10. Yasunaga M et al (2005) Induction and monitoring of definitive and visceral endoderm differentiation of mouse ES cells. Nat Biotech 23(12):1542–1550

    CAS  Google Scholar 

  11. Davidson EH et al (2002) A genomic regulatory network for development. Science 295(5560):1669–1678

    CAS  Google Scholar 

  12. Banerjee I et al (2010) An integer programming formulation to identify the sparse network architecture governing differentiation of embryonic stem cells. Bioinformatics 26(10):1332–1339

    CAS  PubMed Central  Google Scholar 

  13. Chambers I et al (2003) Functional expression cloning of nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113(5):643–655

    CAS  PubMed Central  Google Scholar 

  14. Mitsui K et al (2003) The homeoprotein nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113(5):631–642

    CAS  PubMed Central  Google Scholar 

  15. Boyer LA et al (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122(6):947–956

    CAS  PubMed Central  Google Scholar 

  16. Loh Y-H et al (2006) The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet 38(4):431–440

    CAS  Google Scholar 

  17. Chickarmane V et al (2006) Transcriptional dynamics of the embryonic stem cell switch. PLoS Comput Biol 2(9):e123

    PubMed Central  Google Scholar 

  18. Chickarmane V, Peterson C (2008) A computational model for understanding stem cell, trophectoderm and endoderm lineage determination. PLoS One 3(10):e3478

    PubMed Central  Google Scholar 

  19. MacArthur BD, Please CP, Oreffo ROC (2008) Stochasticity and the molecular mechanisms of induced pluripotency. PLoS One 3(8):e3086

    PubMed Central  Google Scholar 

  20. Cahan P, Li H, Morris SA, Lummertz da Rocha E, Daley GQ, Collins JJ (2014) CellNet: network biology applied to stem cell engineering. Cell:903–915

    Google Scholar 

  21. Prudhomme W et al (2004) Multivariate proteomic analysis of murine embryonic stem cell self-renewal versus differentiation signaling. Proc Natl Acad Sci U S A 101(9):2900–2905

    CAS  PubMed Central  Google Scholar 

  22. Woolf PJ et al (2005) Bayesian analysis of signaling networks governing embryonic stem cell fate decisions. Bioinformatics 21(6):741–753

    CAS  Google Scholar 

  23. Mahdavi A et al (2007) Sensitivity analysis of intracellular signaling pathway kinetics predicts targets for stem cell fate control. PLoS Comput Biol 3(7):e130

    PubMed Central  Google Scholar 

  24. Viswanathan S et al (2002) Ligand/receptor signaling threshold (LIST) model accounts for gp130-mediated embryonic stem cell self-renewal responses to LIF and HIL-6. Stem Cells 20(2):119–138

    CAS  Google Scholar 

  25. Viswanathan S, Zandstra P (2003) Towards predictive models of stem cell fate. Cytotechnology 41(2):75–92

    CAS  PubMed Central  Google Scholar 

  26. Prudhomme WA, Duggar KH, Lauffenburger DA (2004) Cell population dynamics model for deconvolution of murine embryonic stem cell self-renewal and differentiation responses to cytokines and extracellular matrix. Biotechnol Bioeng 88(3):264–272

    CAS  Google Scholar 

  27. Pisu M et al (2008) A simulation model for stem cells differentiation into specialized cells of non-connective tissues. Comput Biol Chem 32(5):338–344

    CAS  Google Scholar 

  28. Henson MA (2003) Dynamic modeling of microbial cell populations. Curr Opin Biotechnol 14(5):460–467

    CAS  Google Scholar 

  29. Glauche I et al (2007) Lineage specification of hematopoietic stem cells: mathematical modeling and biological implications. Stem Cells 25(7):1791–1799

    CAS  Google Scholar 

  30. Phillips BW et al (2007) Directed differentiation of human embryonic stem cells into the pancreatic endocrine lineage. Stem Cells Dev 16(4):18

    Google Scholar 

  31. Touboul T et al (2010) Generation of functional hepatocytes from human embryonic stem cells under chemically defined conditions that recapitulate liver development. Hepatology 51(5):1754–1765

    CAS  Google Scholar 

  32. Kanai-Azuma M et al (2002) Depletion of definitive gut endoderm in Sox17-null mice. Development 129:13

    Google Scholar 

  33. McGrath KE et al (1999) Embryonic expression and function of the chemokine SDF-1 and its receptor, CXCR4. Dev Biol 213(2):442–456

    CAS  Google Scholar 

  34. Roeder I, Loeffler M (2002) A novel dynamic model of hematopoietic stem cell organization based on the concept of within-tissue plasticity. Exp Hematol 30(8):853–861

    CAS  Google Scholar 

  35. Nelson TJ et al (2008) CXCR4+/FLK-1+ biomarkers select a cardiopoietic lineage from embryonic stem cells. Stem Cells 26(6):1464–1473

    CAS  PubMed Central  Google Scholar 

  36. Rodaway A, Patient R (2001) Mesendoderm: an ancient germ layer? Cell 105(2):169–172

    CAS  PubMed Central  Google Scholar 

  37. Degasperi A, Gilmore S (2008) Sensitivity analysis of stochastic models of bistable biochemical reactions. In: Bernardo M, Degano P, Zavattaro G (eds) Formal methods for computational systems biology. Springer, Berlin/Heidelberg, pp 1–20

    Google Scholar 

  38. Freedman D, Diaconis P (1981) On the histogram as a density estimator:L2 theory. Probab Theory Relat Fields 57(4):453–476

    Google Scholar 

  39. Gutenkunst RN et al (2007) Universally sloppy parameter sensitivities in systems biology models. PLoS Comput Biol 3(10):e189

    PubMed Central  Google Scholar 

  40. McLean AB et al (2007) Activin A efficiently specifies definitive endoderm from human embryonic stem cells only when phosphatidylinositol 3-kinase signaling is suppressed. Stem Cells 25(1):29–38

    CAS  Google Scholar 

  41. Yusuf F et al (2005) Expression of chemokine receptor CXCR4 during chick embryo development. Anat Embryol 210(1):35–41

    CAS  Google Scholar 

  42. Tada S et al (2005) Characterization of mesendoderm: a diverging point of the definitive endoderm and mesoderm in embryonic stem cell differentiation culture. Development 132(19):4363–4374

    CAS  Google Scholar 

  43. Loose M, Patient R (2004) A genetic regulatory network for Xenopus mesendoderm formation. Dev Biol 271(2):467–478

    CAS  Google Scholar 

  44. Chng Z et al (2010) SIP1 mediates cell-fate decisions between neuroectoderm and mesendoderm in human pluripotent stem cells. Cell Stem Cell 6(1):59–70

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ipsita Banerjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Task, K., Banerjee, I. (2019). Cell Population Model to Track Stochastic Cellular Decision-Making During Differentiation. In: Cahan, P. (eds) Computational Stem Cell Biology. Methods in Molecular Biology, vol 1975. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9224-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9224-9_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9223-2

  • Online ISBN: 978-1-4939-9224-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics