Skip to main content

Functional Assays of Thiol Isomerase ERp5

  • Protocol
  • First Online:
Functional Disulphide Bonds

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1967))

Abstract

Endoplasmic reticulum protein 5 (ERp5) is a member of the thiol isomerase family of enzymes, whose prototype member is protein disulphide isomerase (PDI). Thiol isomerases catalyze reduction/oxidation (redox) reactions which lead to the cleavage, formation, or isomerization of disulphide bonds in protein substrates. Thiol isomerase reactions on protein disulphides are important for the correct folding of proteins in the endoplasmic reticulum and for the regulation of various protein functions in the extracellular space. Apart from the disulphide reactions, thiol isomerases assist protein folding by chaperone activity.

The disulphide redox activity of ERp5 can be measured with functional assays involving artificial or natural substrates containing disulphide bonds. Herein we describe step-by-step assays of ERp5 reductase, isomerization, and de-nitrosylation activity. Disulphide reductase assays include insulin or di-eosin-GSSG as substrates whereas the isomerization assay includes RNase as substrate. The reduction of natural substrates, i.e., integrin αIIbβ3, can be detected using maleimide labels of free thiols and Western blotting. The biotin switch assay is used to measure the de-nitrosylation of S-nitrosylated substrates. These assays can measure the activity of purified ERp5 protein but can also be applied for the measurement of thiol isomerase activity in cellular samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chaudhuri MM, Tonin PN, Lewis WH, Srinivasan PR (1992) The gene for a novel protein, a member of the protein disulfide isomerase/form I phosphoinositide-specific phospholipase C family, is amplified in hydroxyurea-resistant cells. Biochem J 281:645–650

    Article  CAS  Google Scholar 

  2. Hayano T, Kikuchi M (1995) Cloning and sequencing of the cDNA encoding human P5. Gene 164:377–378

    Article  CAS  Google Scholar 

  3. Kikuchi M, Doi E, Tsujimoto I, Horibe T, Tsujimoto Y (2002) Functional analysis of human P5, a protein disulfide isomerase homologue. J Biochem 132:451–455

    Article  CAS  Google Scholar 

  4. Jessop CE, Chakravarthi S, Watkins RH, Bulleid NJ (2004) Oxidative protein folding in the mammalian endoplasmic reticulum. Biochem Soc Trans 32:655–658

    Article  CAS  Google Scholar 

  5. Hatahet F, Ruddock LW (2009) Protein disulfide isomerase: a critical evaluation of its function in disulfide bond formation. Antioxid Redox Signal 11:2807–2850

    Article  CAS  Google Scholar 

  6. Kaiser BK, Yim D, Chow I-T, Gonzalez S, Dai Z, Mann HH, Strong RK, Groh V, Spies T (2007) Disulfide-isomerase enabled shedding of tumour-associated NKG2D ligands. Nature 447:482–486

    Article  CAS  Google Scholar 

  7. Gumireddy K, Sun F, Klein-Szanto AJ, Gibbins JM, Gimotty PA, Saunders AJ, Schultz PG, Huang Q (2007) In vivo selection for metastasis promoting genes in the mouse. Proc Natl Acad Sci U S A 104:6696–6701

    Article  CAS  Google Scholar 

  8. Flaumenhaft R, Furie B (2016) Vascular thiol isomerases. Blood 128:893–901

    Article  CAS  Google Scholar 

  9. Jordan PA, Stevens JM, Hubbard GP, Barrett NE, Sage T, Authi KS, Gibbins JM (2005) A role for the thiol isomerase protein ERp5 in platelet function. Blood 105:1500–1507

    Article  CAS  Google Scholar 

  10. Passam FH, Lin L, Gopal S, Stopa JD, Bellido-Martin L, Huang M, Furie BC, Furie B (2015) Both platelet- and endothelial cell-derived ERp5 support thrombus formation in a laser-induced mouse model of thrombosis. Blood 125:2276–2285

    Article  CAS  Google Scholar 

  11. Nørgaard P, Westphal V, Tachibana C, Alsøe L, Bjørn H, Winther JR (2001) Functional differences in yeast protein disulfide isomerases. J Cell Biol 152:553–562

    Article  Google Scholar 

  12. Smith AM, Chan J, Oksenberg D, Urfer R, Wexler DS, Ow A et al (2004) A high-throughput turbidometric assay for screening inhibitors of protein disulfide isomerase activity. J Biomol Screen 9:614–620

    Article  CAS  Google Scholar 

  13. Khodier C, VerPlank L, Nag PP, Pu J, Wurst J, Pilyugina T et al (2014) Identification of ML359 as a small molecule inhibitor of protein disulfide isomerase. Probe reports from the NIH Molecular Libraries Program [Internet]. National Center for Biotechnology Information (US), Bethesda, MD; 2010–2013, updated 18 Sept 2014

    Google Scholar 

  14. Horibe T, Torisawa A, Okuno Y, Kawakami K (2014) Discovery of protein disulfide isomerase P5 inhibitors that reduce the secretion of MICA from cancer cells. Chembiochem 15:1599–1606

    Article  CAS  Google Scholar 

  15. Raturi A, Mutus B (2007) Characterization of redox state and reductase activity of protein disulfide isomerase under different redox environments using a sensitive fluorescent assay. Free Radic Biol Med 43:62–70

    Article  CAS  Google Scholar 

  16. Raturi A, Miersch S, Hudson JW, Mutus B (2008) Platelet microparticle-associated protein disulfide isomerase promotes platelet aggregation and inactivates insulin. Biochim Biophys Acta 1778:2790–2796

    Article  CAS  Google Scholar 

  17. Pigiet VP, Schuster BJ (1986) Thioredoxin-catalyzed refolding of disulfide-containing proteins. Proc Natl Acad Sci 83:7643–7647

    Article  CAS  Google Scholar 

  18. Crook EM, Mathias AP, Rabin BR (1960) Spectrophotometric assay of bovine pancreatic ribonuclease by the use of cytidine 2′:3′-phosphate. Biochem J 74:234

    Article  CAS  Google Scholar 

  19. Lundstrom-Ljung J, Holmgren A (1995) Glutaredoxin accelerates glutathione-dependent folding of reduced ribonuclease A together with protein disulfide-isomerase. J Biol Chem 270:7822–7828

    Article  CAS  Google Scholar 

  20. Peng H, Chen W, Cheng Y, Hakuna L, Strongin R, Wang B (2012) Thiol reactive probes and chemosensors. Sensors 12:15907–15946

    Article  CAS  Google Scholar 

  21. Passam FH, Rahgozar S, Qi M, Raftery MJ, Wong JW, Tanaka K, Ioannou Y, Zhang JY, Gemmell R, Qi JC, Giannakopoulos B, Hughes WE, Hogg PJ, Krilis SA (2010) Beta 2 glycoprotein I is a substrate of thiol oxidoreductases. Blood 116:1995–1997

    Article  CAS  Google Scholar 

  22. Passam FH, Rahgozar S, Qi M, Raftery MJ, Wong WH, Tanaka K et al (2010) Redox control of β2-glycoprotein I-von Willebrand factor interaction by thioredoxin-1. J Thromb Haemost 8:1754–1762

    Article  CAS  Google Scholar 

  23. Sliskovic I, Raturi A, Mutus B (2005) Characterization of the S-denitrosation activity of protein disulfide isomerase. J Biol Chem 280:8733–8741

    Article  CAS  Google Scholar 

  24. Bell SE, Shah CM, Gordge MP (2007) Protein disulfide-isomerase mediates delivery of nitric oxide redox derivatives into platelet. Biochem J 403:283–288

    Article  CAS  Google Scholar 

  25. Forrester MT, Foster MW, Stamler JS (2007) Assessment and application of the biotin switch technique for examining protein S-nitrosylation under conditions of pharmacologically induced oxidative stress. J Biol Chem 282:13977–13983

    Article  CAS  Google Scholar 

  26. Jasuja R, Passam FH, Kennedy DR, Kim SH, van Hessem L, Lin L, Bowley SR, Joshi SS, Dilks JR, Furie B, Furie BC, Flaumenhaft R (2012) Protein disulfide isomerase inhibitors constitute a new class of antithrombotic agents. J Clin Invest 122:2104–2113

    Article  CAS  Google Scholar 

  27. Galinski CN, Zwicker JI, Kennedy DR (2016) Revisiting the mechanistic basis of the French Paradox: Red wine inhibits the activity of protein disulfide isomerase in vitro. Thromb Res 137:169–173

    Article  CAS  Google Scholar 

  28. Bekendam RH, Bendapudi PK, Lin L, Nag PP, Pu J, Kennedy DR, Feldenzer A, Chiu J, Cook KM, Furie B, Huang M, Hogg PJ, Flaumenhaft R (2016) A substrate-driven allosteric switch that enhances PDI catalytic activity. Nat Commun 7:12579

    Article  CAS  Google Scholar 

  29. Holbrook LM, Sasikumar P, Stanley RG, Simmonds AD, Bicknell AB, Gibbins JM (2012) The platelet-surface thiol isomerase enzyme ERp57 modulates platelet function. J Thromb Haemost 10:278–288

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding was provided by the St George and Sutherland Medical Research Foundation (FP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Freda Passam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dupuy, A., Passam, F. (2019). Functional Assays of Thiol Isomerase ERp5. In: Hogg, P. (eds) Functional Disulphide Bonds. Methods in Molecular Biology, vol 1967. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9187-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9187-7_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9186-0

  • Online ISBN: 978-1-4939-9187-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics