Skip to main content

Combined MicroRNA In Situ Hybridization and Immunohistochemical Detection of Protein Markers

  • Protocol
  • First Online:
Target Identification and Validation in Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1953))

Abstract

MicroRNAs are short (18–23 nucleotides) noncoding RNAs involved in posttranscriptional regulation of gene expression through their specific binding to the 3′UTR of mRNAs. MicroRNAs can be detected in tissues using specific locked nucleic acid (LNA)-enhanced probes. The characterization of microRNA expression in tissues by in situ detection is often crucial following a microRNA biomarker discovery phase in order to validate the candidate microRNA biomarker and allow better interpretation of its molecular functions and derived cellular interactions. The in situ hybridization data provides information about contextual distribution and cellular origin of the microRNA. By combining microRNA in situ hybridization with immunohistochemical staining of protein markers, it is possible to precisely characterize the microRNA-expressing cells and to identify the potential microRNA targets. This combined technology can also help to monitor changes in the level of potential microRNA targets in a therapeutic setting. In this chapter, we present a fluorescence-based detection method that allows the combination of microRNA in situ hybridization with immunohistochemical staining of one and, in this updated version of the paper, two protein markers detected with primary antibodies raised in the same host species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambros V (2001) microRNAs: tiny regulators with great potential. Cell 107:823–826

    Article  CAS  Google Scholar 

  2. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  CAS  Google Scholar 

  3. Lagos-Quintana M, Rauhut R, Lendeckel W et al (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858

    Article  CAS  Google Scholar 

  4. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  Google Scholar 

  5. Pillai RS, Bhattacharyya SN, Artus CG et al (2005) Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science 309:1573–1576

    Article  CAS  Google Scholar 

  6. Liu J, Rivas FV, Wohlschlegel J et al (2005) A role for the P-body component GW182 in microRNA function. Nat Cell Biol 7:1261–1266

    Article  Google Scholar 

  7. Ambros V (2011) MicroRNAs and developmental timing. Curr Opin Genet Dev 21:511–517

    Article  CAS  Google Scholar 

  8. Cordes KR, Sheehy NT, White MP et al (2009) miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 460:705–710

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Makeyev EV, Zhang J, Carrasco MA et al (2007) The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 27:435–448

    Article  CAS  Google Scholar 

  10. Yao Q, Cao S, Li C et al (2011) Micro-RNA-21 regulates TGF-beta-induced myofibroblast differentiation by targeting PDCD4 in tumor-stroma interaction. Int J Cancer 128:1783–1792

    Article  CAS  Google Scholar 

  11. Madhyastha R, Madhyastha H, Nakajima Y et al (2012) MicroRNA signature in diabetic wound healing: promotive role of miR-21 in fibroblast migration. Int Wound J 4:355–361

    Article  Google Scholar 

  12. Medina PP, Slack FJ (2008) microRNAs and cancer: an overview. Cell Cycle 7:2485–2492

    Article  CAS  Google Scholar 

  13. Winter J, Jung S, Keller S et al (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11:228–234

    Article  CAS  Google Scholar 

  14. Betel D, Wilson M, Gabow A et al (2008) The microRNA.org resource: targets and expression. Nucleic Acids Res 36:D149–D153

  15. Thomson DW, Bracken CP, Goodall GJ (2011) Experimental strategies for microRNA target identification. Nucleic Acids Res 39:6845–6853

    Article  CAS  Google Scholar 

  16. Ferdin J, Kunej T, Calin GA (2010) Non-coding RNAs: identification of cancer-associated microRNAs by gene profiling. Technol Cancer Res Treat 9:123–138

    Article  CAS  Google Scholar 

  17. Sorensen KD, Orntoft TF (2010) Discovery of prostate cancer biomarkers by microarray gene expression profiling. Expert Rev Mol Diagn 10:49–64

    Article  Google Scholar 

  18. Jensen SG, Lamy P, Rasmussen MH et al (2011) Evaluation of two commercial global miRNA expression profiling platforms for detection of less abundant miRNAs. BMC Genomics 12:435

    Article  CAS  Google Scholar 

  19. Burnside J, Ouyang M, Anderson A et al (2008) Deep sequencing of chicken microRNAs. BMC Genomics 9:185

    Article  Google Scholar 

  20. Joyce CE, Zhou X, Xia J et al (2011) Deep sequencing of small RNAs from human skin reveals major alterations in the psoriasis miRNAome. Hum Mol Genet 20:4025–4040

    Article  CAS  Google Scholar 

  21. Schetter AJ, Leung SY, Sohn JJ et al (2008) MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 299:425–436

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ralfkiaer U, Hagedorn PH, Bangsgaard N et al (2011) Diagnostic microRNA profiling in cutaneous T-cell lymphoma (CTCL). Blood 118:5891–5900

    Article  CAS  Google Scholar 

  23. Clop A, Marcq F, Takeda H et al (2006) A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet 38:813–818

    Article  CAS  Google Scholar 

  24. Richardson K, Lai CQ, Parnell LD et al (2011) A genome-wide survey for SNPs altering microRNA seed sites identifies functional candidates in GWAS. BMC Genomics 12:504

    Article  CAS  Google Scholar 

  25. Permuth-Wey J, Thompson RC, Burton NL et al (2011) A functional polymorphism in the pre-miR-146a gene is associated with risk and prognosis in adult glioma. J Neuro-Oncol 105:639–646

    Article  CAS  Google Scholar 

  26. Lei B, Gao S, Luo LF et al (2011) A SNP in the miR-27a gene is associated with litter size in pigs. Mol Biol Rep 38:3725–3729

    Article  CAS  Google Scholar 

  27. Nossent AY, Hansen JL, Doggen C et al (2011) SNPs in microRNA binding sites in 3′-UTRs of RAAS genes influence arterial blood pressure and risk of myocardial infarction. Am J Hypertens 24:999–1006

    Article  Google Scholar 

  28. Zhang L, Liu Y, Song F et al (2011) Functional SNP in the microRNA-367 binding site in the 3′UTR of the calcium channel ryanodine receptor gene 3 (RYR3) affects breast cancer risk and calcification. Proc Natl Acad Sci U S A 108:13653–13658

    Article  CAS  Google Scholar 

  29. Lodygin D, Tarasov V, Epanchintsev A et al (2008) Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle 7:2591–2600

    Article  CAS  Google Scholar 

  30. Calin GA, Ferracin M, Cimmino A et al (2005) A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353:1793–1801

    Article  CAS  Google Scholar 

  31. Trang P, Wiggins JF, Daige CL et al (2011) Systemic delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lung tumors in mice. Mol Ther 19:1116–1122

    Article  CAS  Google Scholar 

  32. Sioud M (2011) Promises and challenges in developing RNAi as a research tool and therapy. Methods Mol Biol 703:173–187

    Article  CAS  Google Scholar 

  33. Wang Z, Rao DD, Senzer N et al (2011) RNA interference and cancer therapy. Pharm Res 12:2983–2995

    Article  Google Scholar 

  34. Garofalo M, Croce CM (2011) microRNAs: master regulators as potential therapeutics in cancer. Annu Rev Pharmacol Toxicol 51:25–43

    Article  CAS  Google Scholar 

  35. Gambari R, Fabbri E, Borgatti M et al (2011) Targeting microRNAs involved in human diseases: a novel approach for modification of gene expression and drug development. Biochem Pharmacol 82:1416–1429

    Article  CAS  Google Scholar 

  36. Kasinski AL, Slack FJ (2010) Potential microRNA therapies targeting Ras, NFkappaB and p53 signaling. Curr Opin Mol Ther 12:147–157

    CAS  PubMed  Google Scholar 

  37. Stenvang J, Silahtaroglu AN, Lindow M et al (2008) The utility of LNA in microRNA-based cancer diagnostics and therapeutics. Semin Cancer Biol 18:89–102

    Article  CAS  Google Scholar 

  38. Jorgensen S, Baker A, Moller S et al (2010) Robust one-day in situ hybridization protocol for detection of microRNAs in paraffin samples using LNA probes. Methods 52:375–381

    Article  CAS  Google Scholar 

  39. Soe MJ, Moller T, Dufva M et al (2011) A sensitive alternative for microRNA in situ hybridizations using probes of 2′-O-methyl RNA + LNA. J Histochem Cytochem 59:661–672

    Article  Google Scholar 

  40. Nielsen BS (2012) MicroRNA in situ hybridization. Methods Mol Biol 822:67–84

    Article  CAS  Google Scholar 

  41. Kloosterman WP, Wienholds E, de BE et al (2006) In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes. Nat Methods 3:27–29

    Article  CAS  Google Scholar 

  42. Sempere LF, Preis M, Yezefski T et al (2010) Fluorescence-based codetection with protein markers reveals distinct cellular compartments for altered MicroRNA expression in solid tumors. Clin Cancer Res 16:4246–4255

    Article  CAS  Google Scholar 

  43. Nuovo GJ (2010) In situ detection of microRNAs in paraffin embedded, formalin fixed tissues and the co-localization of their putative targets. Methods 52:307–315

    Article  CAS  Google Scholar 

  44. Nielsen BS, Holmstrom K (2013) Combined microRNA in situ hybridization and immunohistochemical detection of protein markers. Methods Mol Biol 986:353–365

    Article  CAS  Google Scholar 

  45. Pirici D, Mogoanta L, Kumar-Singh S et al (2009) Antibody elution method for multiple immunohistochemistry on primary antibodies raised in the same species and of the same subtype. J Histochem Cytochem 57:567–575

    Article  CAS  Google Scholar 

  46. Rask L, Balslev E, Jorgensen S et al (2011) High expression of miR-21 in tumor stroma correlates with increased cancer cell proliferation in human breast cancer. APMIS 119:663–673

    Article  Google Scholar 

  47. Greene SB, Herschkowitz JI, Rosen JM (2010) The ups and downs of miR-205: identifying the roles of miR-205 in mammary gland development and breast cancer. RNA Biol 7:300–304

    Article  CAS  Google Scholar 

  48. Nielsen BS, Jorgensen S, Fog JU et al (2011) High levels of microRNA-21 in the stroma of colorectal cancers predict short disease-free survival in stage II colon cancer patients. Clin Exp Metastasis 28:27–38

    Article  CAS  Google Scholar 

  49. Young MR, Santhanam AN, Yoshikawa N et al (2010) Have tumor suppressor PDCD4 and its counteragent oncogenic miR-21 gone rogue? Mol Interv 10:76–79

    Article  CAS  Google Scholar 

  50. Ruan Q, Wang T, Kameswaran V et al (2011) The microRNA-21-PDCD4 axis prevents type 1 diabetes by blocking pancreatic beta cell death. Proc Natl Acad Sci U S A 108:12030–12035

    Article  CAS  Google Scholar 

  51. Knudsen KN, Lindebjerg J, Nielsen BS et al (2017) MicroRNA-200b is downregulated in colon cancer budding cells. PLoS One 12:e0178564

    Article  Google Scholar 

  52. Thorlacius-Ussing G, Schnack Nielsen B, Andersen V et al (2017) Expression and localization of miR-21 and miR-126 in mucosal tissue from patients with inflammatory bowel disease. Inflamm Bowel Dis 23:739–752

    Article  Google Scholar 

  53. Sempere LF (2011) Integrating contextual miRNA and protein signatures for diagnostic and treatment decisions in cancer. Expert Rev Mol Diagn 11:813–827

    Article  CAS  Google Scholar 

  54. Soe MJ, Okkels F, Sabourin D et al (2011) HistoFlex-a microfluidic device providing uniform flow conditions enabling highly sensitive, reproducible and quantitative in situ hybridizations. Lab Chip 11:3896–3907

    Article  CAS  Google Scholar 

  55. Nielsen BS, Moller T, Holmstrom K (2014) Chromogen detection of microRNA in frozen clinical tissue samples using LNA probe technology. Methods Mol Biol 1211:77–84

    Article  CAS  Google Scholar 

  56. Gould BR, Damgaard T, Nielsen BS (2017) Chromogenic in situ hybridization methods for microRNA biomarker monitoring of drug safety and efficacy. Methods Mol Biol 1641:399–412

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Trine Møller for excellent technical assistance and the Danish Ministry of Science, Innovation and Technology, for financial funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim Holmstrøm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nielsen, B.S., Holmstrøm, K. (2019). Combined MicroRNA In Situ Hybridization and Immunohistochemical Detection of Protein Markers. In: Moll, J., Carotta, S. (eds) Target Identification and Validation in Drug Discovery. Methods in Molecular Biology, vol 1953. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9145-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9145-7_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9144-0

  • Online ISBN: 978-1-4939-9145-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics