Skip to main content

Generation of Neural Stem Cells from Induced Pluripotent Stem Cells

  • Protocol
  • First Online:
Neural Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1919))

Abstract

Neural stem cells (NSCs) are defined by three necessary but not sufficient criteria: (1) self-renewable, (2) ability to generate a large number of progeny, and (3) ability to differentiate into the principal central nervous system (CNS) cell types, neurons, astrocytes, and oligodendrocytes. There are various approaches to derive neural lineages from pluripotent stem cells. It is well recognized that the chosen method of NSC derivation is critical to answering the basic biology question under investigation, to the success rate in drug discovery and to the efficacy of the therapeutic cells intended for repairing the CNS. There are three critical attributes of NSCs: (1) well-defined and stable cellular composition, (2) consistent process of perpetuation that avoids drift in composition, and (3) stable phenotype or therapeutic activity of the NSCs or their differentiated progeny. Over the past decades, we have been continuously developing consistent processes for generating stable, multipotent self-renewable NSCs from various sources. In this chapter, we report a method to generate NSCs from induced pluripotent stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Daadi MM, Weiss S (1999) Generation of tyrosine hydroxylase-producing neurons from precursors of the embryonic and adult forebrain. J Neurosci 19(11):4484–4497

    Article  CAS  Google Scholar 

  2. Reynolds BA, Weiss S (1996) Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic precursor is a stem cell. Dev Biol 175:1–13

    Article  CAS  Google Scholar 

  3. Daadi MM, Maag AL, Steinberg GK (2008) Adherent self-renewable human embryonic stem cell-derived neural stem cell line: functional engraftment in experimental stroke model. PLoS One 3(2):e1644

    Article  CAS  Google Scholar 

  4. Brederlau A et al (2006) Transplantation of human embryonic stem cell-derived cells to a rat model of Parkinson’s disease: effect of in vitro differentiation on graft survival and teratoma formation. Stem Cells 24(6):1433–1440

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by NeoNeuron LLC.

Disclosures: Dr. Marcel M. Daadi is founder of the biotech company NeoNeuron.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel M. Daadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Daadi, M.M. (2019). Generation of Neural Stem Cells from Induced Pluripotent Stem Cells. In: Daadi, M. (eds) Neural Stem Cells. Methods in Molecular Biology, vol 1919. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9007-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9007-8_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9005-4

  • Online ISBN: 978-1-4939-9007-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics