Skip to main content

Using Amphioxus as a Basal Chordate Model to Study BMP Signaling Pathway

  • Protocol
  • First Online:
Bone Morphogenetic Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1891))

Abstract

The BMP signaling pathway has been shown to be involved in different aspects of embryonic development across diverse metazoan phyla. Comparative studies on the roles of the BMP signaling pathway provide crucial insights into the evolution of the animal body plans. In this chapter, we present the general workflow on how to investigate the roles of BMP signaling pathway during amphioxus embryonic development. As amphioxus are basal invertebrate chordates, studies on the BMP signaling pathway in amphioxus could elucidate the functional evolution of BMP pathway in the chordate group. Here, we describe methods for animal husbandry, spawning induction, and manipulation of the BMP signaling pathway during embryonic development through drug inhibitors and recombinant proteins. We also introduce an efficient method of using mesh baskets to handle amphioxus embryos for fluorescence immunostaining and multicolor fluorescence in situ hybridization and to assay the effects of manipulating BMP signaling pathway during amphioxus embryogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bier E, De Robertis EM (2015) BMP gradients: a paradigm for morphogen-mediated developmental patterning. Science 348(6242):aaa5838. https://doi.org/10.1126/science.aaa5838

    Article  CAS  PubMed  Google Scholar 

  2. Genikhovich G, Fried P, Prunster MM, Schinko JB, Gilles AF, Fredman D, Meier K, Iber D, Technau U (2015) Axis patterning by BMPs: Cnidarian network reveals evolutionary constraints. Cell Rep. https://doi.org/10.1016/j.celrep.2015.02.035

    Article  CAS  Google Scholar 

  3. Matus DQ, Thomsen GH, Martindale MQ (2006) Dorso/ventral genes are asymmetrically expressed and involved in germ-layer demarcation during cnidarian gastrulation. Curr Biol 16(5):499–505. https://doi.org/10.1016/j.cub.2006.01.052

    Article  CAS  PubMed  Google Scholar 

  4. Saina M, Genikhovich G, Renfer E, Technau U (2009) BMPs and chordin regulate patterning of the directive axis in a sea anemone. Proc Natl Acad Sci U S A 106(44):18592–18597. https://doi.org/10.1073/pnas.0900151106

    Article  PubMed  PubMed Central  Google Scholar 

  5. Denes AS, Jekely G, Steinmetz PR, Raible F, Snyman H, Prud’homme B, Ferrier DE, Balavoine G, Arendt D (2007) Molecular architecture of annelid nerve cord supports common origin of nervous system centralization in bilateria. Cell 129(2):277–288

    Article  CAS  Google Scholar 

  6. Mizutani CM, Meyer N, Roelink H, Bier E (2006) Threshold-dependent BMP-mediated repression: a model for a conserved mechanism that patterns the neuroectoderm. PLoS Biol 4(10):e313. https://doi.org/10.1371/journal.pbio.0040313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. De Robertis EM (2008) Evo-devo: variations on ancestral themes. Cell 132(2):185–195. https://doi.org/10.1016/j.cell.2008.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yu JK, Satou Y, Holland ND, Shin IT, Kohara Y, Satoh N, Bronner-Fraser M, Holland LZ (2007) Axial patterning in cephalochordates and the evolution of the organizer. Nature 445(7128):613–617

    Article  CAS  Google Scholar 

  9. Basch ML, Bronner-Fraser M (2006) Neural crest inducing signals. Adv Exp Med Biol 589:24–31. https://doi.org/10.1007/978-0-387-46954-6_2

    Article  CAS  PubMed  Google Scholar 

  10. Milet C, Monsoro-Burq AH (2012) Neural crest induction at the neural plate border in vertebrates. Dev Biol 366(1):22–33. https://doi.org/10.1016/j.ydbio.2012.01.013

    Article  CAS  PubMed  Google Scholar 

  11. Schumacher JA, Hashiguchi M, Nguyen VH, Mullins MC (2011) An intermediate level of BMP signaling directly specifies cranial neural crest progenitor cells in zebrafish. PLoS One 6(11):e27403. https://doi.org/10.1371/journal.pone.0027403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Christiaen L, Stolfi A, Levine M (2010) BMP signaling coordinates gene expression and cell migration during precardiac mesoderm development. Dev Biol 340(2):179–187. https://doi.org/10.1016/j.ydbio.2009.11.006

    Article  CAS  PubMed  Google Scholar 

  13. Lee KH, Evans S, Ruan TY, Lassar AB (2004) SMAD-mediated modulation of YY1 activity regulates the BMP response and cardiac-specific expression of a GATA4/5/6-dependent chick Nkx2.5 enhancer. Development 131(19):4709–4723. https://doi.org/10.1242/dev.01344

    Article  CAS  PubMed  Google Scholar 

  14. Bourlat SJ, Juliusdottir T, Lowe CJ, Freeman R, Aronowicz J, Kirschner M, Lander ES, Thorndyke M, Nakano H, Kohn AB, Heyland A, Moroz LL, Copley RR, Telford MJ (2006) Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida. Nature 444(7115):85–88

    Article  CAS  Google Scholar 

  15. Delsuc F, Brinkmann H, Chourrout D, Philippe H (2006) Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439(7079):965–968

    Article  CAS  Google Scholar 

  16. Delsuc F, Tsagkogeorga G, Lartillot N, Philippe H (2008) Additional molecular support for the new chordate phylogeny. Genesis 46(11):592–604. https://doi.org/10.1002/dvg.20450

    Article  PubMed  Google Scholar 

  17. Holland ND, Chen J (2001) Origin and early evolution of the vertebrates: new insights from advances in molecular biology, anatomy, and palaeontology. BioEssays 23(2):142–151. https://doi.org/10.1002/1521-1878(200102)23:2<142::AID-BIES1021>3.0.CO;2-5

    Article  CAS  PubMed  Google Scholar 

  18. Holland LZ (2015) Genomics, evolution and development of amphioxus and tunicates: the Goldilocks principle. J Exp Zool B Mol Dev Evol 324(4):342–352. https://doi.org/10.1002/jez.b.22569

    Article  CAS  PubMed  Google Scholar 

  19. Kozmikova I, Candiani S, Fabian P, Gurska D, Kozmik Z (2013) Essential role of Bmp signaling and its positive feedback loop in the early cell fate evolution of chordates. Dev Biol 382(2):538–554. https://doi.org/10.1016/j.ydbio.2013.07.021

    Article  CAS  PubMed  Google Scholar 

  20. Onai T, Yu JK, Blitz IL, Cho KW, Holland LZ (2010) Opposing Nodal/Vg1 and BMP signals mediate axial patterning in embryos of the basal chordate amphioxus. Dev Biol 344(1):377–389. https://doi.org/10.1016/j.ydbio.2010.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Holland LZ (2015) Cephalochordata. In: Wanninger A (ed) Evolutionary developmental biology of invertebrates, vol 6. Springer, Vienna, pp 91–133

    Chapter  Google Scholar 

  22. Holland LZ, Albalat R, Azumi K, Benito-Gutierrez E, Blow MJ, Bronner-Fraser M, Brunet F, Butts T, Candiani S, Dishaw LJ, Ferrier DE, Garcia-Fernandez J, Gibson-Brown JJ, Gissi C, Godzik A, Hallbook F, Hirose D, Hosomichi K, Ikuta T, Inoko H, Kasahara M, Kasamatsu J, Kawashima T, Kimura A, Kobayashi M, Kozmik Z, Kubokawa K, Laudet V, Litman GW, McHardy AC, Meulemans D, Nonaka M, Olinski RP, Pancer Z, Pennacchio LA, Pestarino M, Rast JP, Rigoutsos I, Robinson-Rechavi M, Roch G, Saiga H, Sasakura Y, Satake M, Satou Y, Schubert M, Sherwood N, Shiina T, Takatori N, Tello J, Vopalensky P, Wada S, Xu A, Ye Y, Yoshida K, Yoshizaki F, Yu JK, Zhang Q, Zmasek CM, de Jong PJ, Osoegawa K, Putnam NH, Rokhsar DS, Satoh N, Holland PW (2008) The amphioxus genome illuminates vertebrate origins and cephalochordate biology. Genome Res 18(7):1100–1111. https://doi.org/10.1101/gr.073676.107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Putnam NH, Butts T, Ferrier DE, Furlong RF, Hellsten U, Kawashima T, Robinson-Rechavi M, Shoguchi E, Terry A, Yu JK, Benito-Gutierrez EL, Dubchak I, Garcia-Fernandez J, Gibson-Brown JJ, Grigoriev IV, Horton AC, de Jong PJ, Jurka J, Kapitonov VV, Kohara Y, Kuroki Y, Lindquist E, Lucas S, Osoegawa K, Pennacchio LA, Salamov AA, Satou Y, Sauka-Spengler T, Schmutz J, Shin IT, Toyoda A, Bronner-Fraser M, Fujiyama A, Holland LZ, Holland PW, Satoh N, Rokhsar DS (2008) The amphioxus genome and the evolution of the chordate karyotype. Nature 453(7198):1064–1071. https://doi.org/10.1038/nature06967

    Article  CAS  PubMed  Google Scholar 

  24. Satou Y, Wada S, Sasakura Y, Satoh N (2008) Regulatory genes in the ancestral chordate genomes. Dev Genes Evol 218(11–12):715–721. https://doi.org/10.1007/s00427-008-0219-y

    Article  PubMed  Google Scholar 

  25. Fuentes M, Benito E, Bertrand S, Paris M, Mignardot A, Godoy L, Jimenez-Delgado S, Oliveri D, Candiani S, Hirsinger E, D’Aniello S, Pascual-Anaya J, Maeso I, Pestarino M, Vernier P, Nicolas JF, Schubert M, Laudet V, Geneviere AM, Albalat R, Garcia Fernandez J, Holland ND, Escriva H (2007) Insights into spawning behavior and development of the European amphioxus (Branchiostoma lanceolatum). J Exp Zool B Mol Dev Evol 308(4):484–493. https://doi.org/10.1002/jez.b.21179

    Article  PubMed  Google Scholar 

  26. Fuentes M, Schubert M, Dalfo D, Candiani S, Benito E, Gardenyes J, Godoy L, Moret F, Illas M, Patten I, Permanyer J, Oliveri D, Boeuf G, Falcon J, Pestarino M, Fernandez JG, Albalat R, Laudet V, Vernier P, Escriva H (2004) Preliminary observations on the spawning conditions of the European amphioxus (Branchiostoma lanceolatum) in captivity. J Exp Zool B Mol Dev Evol 302(4):384–391. https://doi.org/10.1002/jez.b.20025

    Article  PubMed  Google Scholar 

  27. Holland LZ, Yu JK (2004) Cephalochordate (amphioxus) embryos: procurement, culture, and basic methods. Methods Cell Biol 74:195–215

    Article  Google Scholar 

  28. Yasui K, Urata M, Yamaguchi N, Ueda H, Henmi Y (2007) Laboratory culture of the Oriental lancelet Branchiostoma belcheri. Zool Sci 24(5):514–520. https://doi.org/10.2108/zsj.24.514

    Article  PubMed  Google Scholar 

  29. Zhang QJ, Sun Y, Zhong J, Li G, Lu XM, Wang YQ (2007) Continuous culture of two lancelets and production of the second filial generations in the laboratory. J Exp Zool B Mol Dev Evol 308(4):464–472. https://doi.org/10.1002/jez.b.21172

    Article  PubMed  Google Scholar 

  30. Zhang QJ, Zhong J, Fang SH, Wang YQ (2006) Branchiostoma japonicum and B. belcheri are distinct lancelets (Cephalochordata) in Xiamen waters in China. Zool Sci 23(6):573–579. https://doi.org/10.2108/zsj.23.573

    Article  PubMed  Google Scholar 

  31. Bertrand S, Escriva H (2011) Evolutionary crossroads in developmental biology: amphioxus. Development 138(22):4819–4830. https://doi.org/10.1242/dev.066720

    Article  CAS  PubMed  Google Scholar 

  32. Yong LW, Yu JK (2016) Tracing the evolutionary origin of vertebrate skeletal tissues: insights from cephalochordate amphioxus. Curr Opin Genet Dev 39:55–62. https://doi.org/10.1016/j.gde.2016.05.022

    Article  CAS  PubMed  Google Scholar 

  33. Huang S, Chen Z, Yan X, Yu T, Huang G, Yan Q, Pontarotti PA, Zhao H, Li J, Yang P, Wang R, Li R, Tao X, Deng T, Wang Y, Li G, Zhang Q, Zhou S, You L, Yuan S, Fu Y, Wu F, Dong M, Chen S, Xu A (2014) Decelerated genome evolution in modern vertebrates revealed by analysis of multiple lancelet genomes. Nat Commun 5:5896. https://doi.org/10.1038/ncomms6896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li G, Yang X, Shu Z, Chen X, Wang Y (2012) Consecutive spawnings of Chinese amphioxus, Branchiostoma belcheri, in captivity. PLoS One 7(12):e50838. https://doi.org/10.1371/journal.pone.0050838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Benito-Gutierrez E, Weber H, Bryant DV, Arendt D (2013) Methods for generating year-round access to amphioxus in the laboratory. PLoS One 8(8):e71599. https://doi.org/10.1371/journal.pone.0071599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Theodosiou M, Colin A, Schulz J, Laudet V, Peyrieras N, Nicolas JF, Schubert M, Hirsinger E (2011) Amphioxus spawning behavior in an artificial seawater facility. J Exp Zool B Mol Dev Evol 316(4):263–275. https://doi.org/10.1002/jez.b.21397

    Article  PubMed  Google Scholar 

  37. Yasui K, Igawa T, Kaji T, Henmi Y (2013) Stable aquaculture of the Japanese lancelet Branchiostoma japonicum for 7 years. J Exp Zool B Mol Dev Evol 320(8):538–547. https://doi.org/10.1002/jez.b.22540

    Article  PubMed  Google Scholar 

  38. Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH (eds) Culture of marine invertebrate animals. Plenum Press, New York, pp 26–60

    Google Scholar 

  39. Sambrook J, Russell DW (2001) Appendix. In: Molecular cloning: a laboratory manual, vol 3, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp A1.7–A1.14

    Google Scholar 

  40. Yu JK, Wang MC, Shin IT, Kohara Y, Holland LZ, Satoh N, Satou Y (2008) A cDNA resource for the cephalochordate amphioxus Branchiostoma floridae. Dev Genes Evol 218(11–12):723–727

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Ministry of Science and Technology (MOST 104-2923-B-001-002-MY3; 105-2628-B-001-003-MY3) and Academia Sinica, Taiwan (AS 98-CDA-L06), and grant GC15-21285J from Grantová Agentura České Republiky. We would like to thank all the past and present members of the Research Group of Development and Evolution at ICOB Academia Sinica, especially Yi-Chih Chen, Tsai-Ming Lu, Yi-Jyun Luo, and Tzu-Kai Huang, for their help on developing these protocols. We would also like to thank Yann le Petillon for the advice regarding the properties of Dorsomorphin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jr-Kai Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yong, L.W., Kozmikova, I., Yu, JK. (2019). Using Amphioxus as a Basal Chordate Model to Study BMP Signaling Pathway. In: Rogers, M. (eds) Bone Morphogenetic Proteins. Methods in Molecular Biology, vol 1891. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8904-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8904-1_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8903-4

  • Online ISBN: 978-1-4939-8904-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics